Giải câu 4 trang 114 toán VNEN 9 tập 2

53 lượt xem

Câu 4: Trang 114 toán VNEN 9 tập 2

Chứng minh rằng: Trong một tứ giác nội tiếp, góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó. Ngược lại, tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó là tứ giác nội tiếp.

Hướng dẫn: Xem hình 102

Nếu HIJK là tứ giác nội tiếp thì .

Mặt khác, và $\widehat{KJx}$ là hai góc kề bù, nên $\widehat{IJK} + \widehat{KJx} = 180^\circ$. Từ đó suy ra $....$

Ngược lại, nếu thì $\widehat{IHK} + \widehat{IJK} = \widehat{IJK} + \widehat{KJx} = 180^\circ$

Từ đó suy ra HIJK

Bài làm:

Nếu HIJK là tứ giác nội tiếp thì .

Mặt khác, và $\widehat{KJx}$ là hai góc kề bù, nên $\widehat{IJK} + \widehat{KJx} = 180^\circ$. Từ đó suy ra $....$

Ngược lại, nếu thì $\widehat{IHK} + \widehat{IJK} = \widehat{IJK} + \widehat{KJx} = 180^\circ$

Từ đó suy ra HIJK là tứ giác nội tiếp.

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội