Lời giải Bài 3 Đề thi thử trường THPT chuyên Đà Nẵng

2 lượt xem

Bài làm:

Lời giải bài 3:

Đề ra :

Cho các số thực dương a , b , c thỏa mãn

Chứng minh :

Lời giải chi tiết :

Ta có :

Mà $a^{2}+b^{2}+c^{2}\geq \frac{1}{3}\sqrt{(a^{2}+b^{2}+c^{2})^{2}}

=>

Gọi = VT

<=> VT =

<=> VT $\frac{(2a^{2}+2b^{2}+2c^{2})^{2}}{2a^{3}+2b^{3}+2c^{3}+2a^{2}b^{2}+2b^{2}c^{2}+2c^{2}a^{2}}$

<=> VT $\frac{(2a^{2}+2b^{2}+2c^{2})^{2}}{(a^{2}+b^{2}+c^{2})^{2}+a^{2}+b^{2}+c^{2}}$

<=> VT $\frac{36}{9+3}=3\geq a+b+c$

=> ( đpcm ) .

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội