Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
Bài làm:
Lời giải bài 4 :
Đề bài :
Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của . tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) ( với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF =
a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF.
b) Tính
c) Kẻ OM ⊥ BC ( M ∈ AD) . Chứng minh :
Hướng dẫn giải chi tiết :
a. Ta có :
=>
=> Tứ giác OBDF nội tiếp đường tròn. (đpcm)
=> Khi đó Tâm I của đường tròn ngoại tiếp tứ giác OBDF chính là trung điểm của OD ( IO = ID ).
b. Áp dụng địn lý Py- ta-go cho tam giác OFA vuông ở F , ta có :
=>
Mà
=>
=>
c. Ta có : OM // BD (
=>
=>
Vậy tam giác MOD cân tại M => MD = MO .
Áp dụng hệ quả định lí Talet cho tam giác ABD , ta có :
<=>
<=>
Xem thêm bài viết khác
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Nguyễn Huệ
- Lời giải Bài 1 Đề thi thử trường THPT chuyên Đà Nẵng
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên TP HCM
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Lê Hồng Phong
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường chuyên TP HCM
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường THPT chuyên Thái Bình
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Amtesdam Hà Nội
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường THPT chuyên Vinh