Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của Trường THPT chuyên Vinh
Bài làm:
Lời giải bài 4 :
Đề bài :
Cho đường tròn tâm O và điểm A nằm ngoài đường tròn . Từ A kẻ hai tiếp tuyến AB , AC với đường tròn ( B, C là hai tiếp điểm ).
a. Chứng minh tứ giác ABOC nội tiếp .
b. Gọi là trực tâm tam giác ABC , chứng minh tứ giác BOCH là hình thoi .
c. Gọi I là giao điểm của đoạn thẳng OA với đường tròn .Chứng minh I là tâm đường tròn nội tiếp tam giác ABC .
Hướng dẫn giải chi tiết :
a. Ta có :
=>
Vậy tứ giác ABOC nội tiếp . (đpcm)
b. Ta có :
Tương tự : OC // BH (2)
Từ (1),(2) => OBHC là hình bình hành .
Mặt khác : OB = OC
=> OBHC là hình thoi .
c. Vì I là giao điểm của đoạn thẳng OA với đường tròn => I là điểm chính giữa cung BC.
Ta có : OA là đường phân giác
Mặt khác :
Và
=>
=> BI là đường phân giác
Từ (1) , (2) => I là tâm đường tròn nội tiếp tam giác ABC . (đpcm)
Xem thêm bài viết khác
- Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của Trường THPT chuyên Thái Bình
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Nguyễn Huệ
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường THPT chuyên Thái Bình
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 5 Đề thi thử trường THPT chuyên Đà Nẵng
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên TP HCM
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Nguyễn Huệ
- Lời giải Câu 5 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Lê Qúy Đôn
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Lê Hồng Phong
- Lời giải Bài 2 Đề thi thử trường THPT chuyên Amtesdam Hà Nội