Giải bài 7 Ôn tập cuối năm sgk Đại số 10 trang 160

3 lượt xem

Bài 7: trang 161 sgk Đại số 10

Chứng minh các hệ thức sau:

a)

b)

c)

d)

Bài làm:

a)

\(\eqalign{
& {{1 - 2{{\sin }^2}a} \over {1 + \sin 2a}} = {{{{\cos }^2}a - {{\sin }^2}a} \over {{{\cos }^2}a + {{\sin }^2}a + 2\sin a\cos a}} \cr
& = {{\cos a - \sin a} \over {\cos a + \sin a}} = {{1 - {{\sin a} \over {\cos a}}} \over {1 + {{\sin a} \over {\cos a}}}} \cr
& = {{1 - \tan a} \over {1 + \tan a}} \cr} \)

b)

\(\eqalign{
& {{\sin a + \sin 3a + \sin 5a} \over {\cos a + \cos 3a + \cos 5a}} \cr
& = {{2\sin {{a + 5a} \over 2}\cos {{5a - a} \over 2} + \sin 3a} \over {2\cos {{a + 5a} \over 2}\cos {{5a - a} \over 2} + \cos 3a}} = {{\sin 3a(1 + 2\cos 2a)} \over {\cos 3a(1 + 2\cos 2a)}} \cr
& = \tan 3a \cr} \)

c)

\(\eqalign{
& {{{{\sin }^4}a - {{\cos }^4}a + {{\cos }^2}a} \over {2(1 - \cos a)}} = {{({{\sin }^2}a + {{\cos }^2}a)({{\sin }^2}a - {{\cos }^2}a) + {{\cos }^2}a} \over {2(1 - \cos a)}} \cr
& = {{{{\sin }^2}a - {{\cos }^2}a + {{\cos }^2}a} \over {4{{\sin }^2}{a \over 2}}} = {{4{{\sin }^2}{a \over 2}{{\cos }^2}{a \over 2}} \over {4{{\sin }^2}{a \over 2}}} \cr
& = {\cos ^2}{a \over 2} \cr} \)

d)

\(\eqalign{
& {{\tan 2x\tan x} \over {\tan 2x - \tan x}} \cr
& = {{{{2\tan x} \over {1 - {{\tan }^2}x}}.\tan x} \over {{{2\tan x} \over {1 - {{\tan }^2}x}} - \tan x}} = {{2\tan x} \over {{{\tan }^2}x + 1}} \cr
& = \sin 2x \cr} \)

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội