Giải câu 1 trang 94 toán VNEN 7 tập 2

4 lượt xem

D.E Hoạt động vận dụng và Tìm tòi, mở rộng

Câu 1: Trang 94 sách toán VNEN 7 tập 2

Cho tam giác ABC. Qua mỗi đỉnh A, B, C kẻ các đường thẳng song song với cạnh đối diện, chúng cắt nhau tạo thành tam giác DEF (h.79).

a) Chứng minh rằng A là trung điểm của EF.

b) Các đường cao của tam giác ABC tương ứng là các đường trung trực của tam giác nào?

Bài làm:

a) Xét tam giác ABC và tam giác ACE:

- AC là cạnh chung

- = $\widehat{CAE}$ (so le trong, AE //BC)

- = $\widehat{ACE}$ (so le trong, CE //AB)

Do đó: = $\Delta CEA$ (g.c.g)

=> AE = BC (1)

Xét và $\Delta ABF$ có:

- = $\widehat{BAF}$ (so le trong, BE //AC)

- = $\widehat{ABF}$ (so le trong, BF //AC)

- AC là cạnh chung

Do đó: = $\Delta BAF$ (g.c.g)

=> AF = BC (2)

Từ (1) và (2) suy ra: AE = AF.

Vậy A là trung điểm của EF.

b) Kẻ AH vuông góc với BC

EF // BC (gt)

=> AH vuông góc với EF

AE = AF (chứng minh trên)

Vậy đường cao AH là đường trung trực của EF.

Chứng minh tương tự câu a, ta có B là trung điểm DF và DF // AC nên đường cao kẻ từ đỉnh B của tam giác ABC là đường trung trực DF.

Ta có C là trung điểm của DE và DE // AB nên đường cao kẻ từ đỉnh C của ∆ABC là đường trung trực của DE.

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội