Giải câu 3 trang 47 sách toán VNEN lớp 7 tập 2

  • 1 Đánh giá

Câu 3: Trang 47 sách toán VNEN 7 tập 2

Cho đa thức sau:

M = 7x2y2 – 2xy – 5y3 – y2 + 5x4

N = -x2y2 – 4xy + 3y3 – 3y2 + 2x4

P = -3x2y2 + 6xy + 2y3 +6y2 + 7

Tính M + N + P. Từ đó hãy chứng minh rằng: ít nhất một trong ba đa thức đã cho có giá trị dương với mọi x, y.

Bài làm:

M + N + P = (7x2y2 – 2xy – 5y3 – y2 + 5x4) + (-x2y2 – 4xy + 3y3 – 3y2 + 2x4) + (-3x2y2 + 6xy + 2y3 +6y2 + 7)

=7x2y2 – 2xy – 5y3 – y2 + 5x4 -x2y2 – 4xy + 3y3 – 3y2 + 2x4 -3x2y2 + 6xy + 2y3 +6y2 + 7

= (7x2y2-x2y2-3x2y2) + (– 2xy– 4xy+ 6xy) + (– 5y3 + 3y3 + 2y3) + (– y2– 3y2 +6y2) + (5x4+ 2x4) + 7

= 3x2y2 + 2y2 + 6x4 + 7

Ta thấy: x2y2 ≥ 0 với mọi x, y => 3x2y2 ≥ 0 với mọi x, y

y2 ≥ 0 với mọi y =>2y2 ≥ 0 với mọi y.

x4 ≥ 0 với mọi x =>6x4 ≥ 0 với mọi x.

=> M + N + P > 0 với mọi x, y => ít nhất một trong ba đa thức đã cho có giá trị dương với mọi x, y.

  • 8 lượt xem
Cập nhật: 07/09/2021