Giải bài 8 Ôn tập cuối năm sgk Đại số 10 trang 160

5 lượt xem

Bài 8: trang 161 sgk Đại số 10

Rút gọn các biểu thức sau:

a)

b)

c)

Bài làm:

a)

\(\eqalign{
& {{1 + \sin 4a - \cos 4a} \over {1 + \cos 4a + \sin 4a}} = {{2{{\sin }^2}2a + 2\sin 2a\cos 2a} \over {2{{\cos }^2}2a + 2\sin 2a\cos 2a}} \cr
& = {{2\sin 2a(\sin 2a + \cos 2a)} \over {2\cos 2a(\sin 2a + \cos 2a)}} = \tan 2a \cr} \)

b)

\(\eqalign{
& {{1 + \cos a} \over {1 - \cos a}}{\tan ^2}{a \over 2} - {\cos ^2}a = {{2{{\cos }^2}{a \over 2}} \over {2{{\sin }^2}{a \over 2}}}.{{2{{\sin }^2}{a \over 2}} \over {2{{\cos }^2}{a \over 2}}} - {\cos ^2}{a \over 2} \cr
& = 1 - {\cos ^2}{a \over 2} = {\sin ^2}{a \over 2} \cr} \)

c)

\(\eqalign{
& {{\cos 2x - \sin 4x - \cos 6x} \over {\cos 2x + \sin 4x - \cos 6x}} = {{(cos2x - \cos 6x) - sin4x} \over {(cos2x - \cos 6x) + sin4x}} \cr
& = {{-2\sin {{2x + 6x} \over 2}\sin {{6x - 2x} \over 2} - \sin 4x} \over {-2\sin {{2x + 6x} \over 2}\sin {{2x - 6x} \over 2} + \sin 4x}} \cr
& = {{2\sin 2x - 1} \over {2\sin 2x + 1}} \cr} \)

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội