Giải câu 4 trang 91 toán VNEN 7 tập 2

15 lượt xem

Câu 4: Trang 91 sách toán VNEN 7 tập 2

Trong hình 73, tam giác ABC có góc A bằng 62 độ; CD, BD lần lượt là đường phân giác ứng với các góc ACB và ABC.

a) Tính số đo của góc CDB.

b) Kẻ tia AD, tính số đo của góc CAD.

c) Điêm D có cách đều ba cạnh của tam giác ABC không? Tại sao?

Bài làm:

a) Ta có:

+ $\widehat{ACB}$ + $\widehat{BAC}$ = $180^{o}$ (tổng 3 góc trong tam giác ABC)

=> + $\widehat{ACB}$ = $180^{o}$ - $\widehat{BAC}$ = $180^{o}$ - $62^{o}$ = $118^{o}$

Vì BD cà CD là 2 đường phân giác của và $\widehat{ACB}$ nên ta có:

+ $\widehat{BCI}$ = $\frac{1}{2}$$\widehat{ABC}$ + $\frac{1}{2}$$\widehat{ACB}$

= ($\widehat{ABC}$ +$\widehat{ACB}$)

= . $118^{o}$ = $59^{o}$

+ $\widehat{BCD}$ + $\widehat{BDC}$ = $180^{o}$ (tổng 3 góc trong tam giác BCD)

=> = $180^{o}$ - ($\widehat{CBD}$ + $\widehat{BCD}$) =$180^{o}$ - $59^{o}$ = $121^{o}$

Vậy = $121^{o}$

b) Trong tam giac ABC có 2 đường phân giác là BD và CD cắt nhau tại D => AD cũng lac đường phân giác của góc CAB (theo tính chất đường phân giác trong tam giác). Suy ra:

= $\frac{1}{2}$$\widehat{CAB}$ = $\frac{1}{2}$ . $62^{o}$ = $31^{o}$

Vậy = $31^{o}$

c) Điểm D sẽ cách đều 3 cạnh của tam giác ABC. Vì theo tính chất đường phân giác của tam giác thì D là giao của 3 đượng phân giác trong tam giác ABC nên nó cách đều 3 cạnh AB, AC và BC.

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội