Lời giải Bài 5 Đề thi thử lần 1 năm 2017 của trường THPT chuyên Amtesdam Hà Nội

Bài làm:

Lời giải bài 5:

Đề ra :

Cho là 15 số tự nhiên đôi một nguyên tố cùng nhau. Chứng minh rằng trong 15 số tự nhiên đó luôn tồn tại ít nhất một số nguyên tố.

Lời giải chi tiết :

Phản chứng : giả sử 15 số tự nhiên đó đều là hợp số.

Do nên mỗi số tự nhiên đó đều có một ước nguyên tố nhỏ hơn 47.

Gọi là ước nguyên tố của $a_{i}$ ( $p_{i}

Do có tất cả 14 số nguyên tố nhỏ hơn 47 nên theo nguyên lý Dirichlet tồn tại mà $p_{i}=p_{j}$ .

=> không nguyên tố cùng nhau => mâu thuẫn với giả thiết .

Vậy trong 15 số tự nhiên đó luôn tồn tại ít nhất một số nguyên tố.

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội