Lời giải Bài 3 Đề thi thử trường THPT chuyên Amtesdam Hà Nội
Bài làm:
Lời giải bài 3:
Đề ra :
Một phòng họp có 2016 ghế và được chia thành các dãy có số ghế bằng nhau. Nếu bớt đi mỗi dãy 7 ghế và thêm 4 dãy thì số ghế trong phòng không thay đổi. Hỏi ban đầu số ghế trong phòng họp được chia thành bao nhiêu dãy ?
Lời giải chi tiết :
Gọi x là số dãy ghế trong phòng lúc đầu .(x nguyên, x > 0)
Theo giả thiết : số dãy ghế lúc sau là : x +4 .
=> Số ghế ở mỗi dãy lúc đầu : (ghế)
Số ghế ở mỗi dãy lúc sau : (ghế)
Ta có phương trình : (*)
Giải (*) , ta được : ( loại vì x < 0 )
Vậy trong phòng có 32 dãy ghế.
Xem thêm bài viết khác
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của Trường THPT chuyên Thái Bình
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên TP HCM
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Amtesdam Hà Nội
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Lê Hồng Phong
- Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Nguyễn Huệ
- Lời giải Câu 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Lê Qúy Đôn
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường THPT chuyên Thái Bình
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường chuyên Đà Nẵng
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên TP HCM
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội