Dạng 2: Tìm điều kiện của tham số để hàm số bậc 3 đồng biến trên tập số thực.
Dạng 2: Cho hàm số
Bài làm:
I. Phương pháp giải:
Điều trên tương đương với
II. Bài tập áp dụng
Bài tập 1: Hàm số
Bài giải:
Ta có
Hàm số nghịch biến trên
Vậy số giá trị nguyên của
Bài tập 2: Có bao nhiêu giá trị nguyên của
Bài giải:
Ta thấy, điều kiện cần để hàm số trên nghịch biến trên
, $y=-x^3-x^2-x+4$. Ta có, $y'=-3x^2-2x-1
Do đó, hàm số nghịch biến trên
, $y=-x+4$. Ta có, $y'=-1
Do đó, hàm số nghịch biến trên
, $y=-2x^2-x+4$.
Hàm số nghịch biến trên
Vậy số giá trị nguyên của
Xem thêm bài viết khác
- Giải câu 4 bài: Hàm số mũ. Hàm số Lôgarit
- Giải câu 5 bài: Lôgarit
- Giải bài 1: Lũy thừa
- Giải câu 1 bài: Phương trình mũ. Phương trình Lôgarit
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 8)
- Giải câu 3 bài: Hàm số lũy thừa
- Giải câu 2 bài 4: Đường tiệm cận
- Tìm giá trị của tham số sao cho hàm số thoả mãn một giá trị nào đó liên quan đến GTLN và GTNN trên đoạn [a; b].
- Dạng 4: Tính đơn điệu của hàm hợp
- Giải câu 1 bài: Phương trình bậc hai với hệ số thực
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 7)
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 3)