Dạng 2: Tìm điều kiện của tham số để hàm số bậc 3 đồng biến trên tập số thực.
Dạng 2: Cho hàm số
Bài làm:
I. Phương pháp giải:
Điều trên tương đương với
II. Bài tập áp dụng
Bài tập 1: Hàm số
Bài giải:
Ta có
Hàm số nghịch biến trên
Vậy số giá trị nguyên của
Bài tập 2: Có bao nhiêu giá trị nguyên của
Bài giải:
Ta thấy, điều kiện cần để hàm số trên nghịch biến trên
, $y=-x^3-x^2-x+4$. Ta có, $y'=-3x^2-2x-1
Do đó, hàm số nghịch biến trên
, $y=-x+4$. Ta có, $y'=-1
Do đó, hàm số nghịch biến trên
, $y=-2x^2-x+4$.
Hàm số nghịch biến trên
Vậy số giá trị nguyên của
Xem thêm bài viết khác
- Giải câu 2 bài: Ôn tập chương 4
- Giải câu 1 bài: Hàm số lũy thừa
- Dạng 1: Tính tích phân dùng phương pháp đồng nhất hệ số với phân thức có mẫu ở dạng tích
- Dạng 2: Tìm thể tích khối tròn xoay được giới hạn bởi đồ thị các hàm số y=f(x), y=g(x), y=h(x).
- Giải Bài 3: Lôgarit
- Giải câu 1 bài: Hàm số mũ. Hàm số Lôgarit
- Giải câu 1 bài: Số phức
- Giải bài 1: Lũy thừa
- Dạng 3: Tính tích phân bằng phương pháp đưa về các phân thức có mẫu số là biểu thức bình phương
- Giải câu 4 bài: Lôgarit
- Giải câu 4 bài: Hàm số lũy thừa
- Giải câu 1 bài: Nguyên hàm