-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải câu 1 bài 4: Đường tiệm cận
Bài 1: Trang 30 - sgk giải tích 12
Tìm các tiệm cận của đồ thị hàm số
a) ;
b) ;
c) ;
d) .
Bài làm:
a) Ta có nên x=2 là tiệm cận đứng của đồ thị hàm số.
nên
b) là tiệm cận đứng.
là tiệm cận ngang.
c) là tiệm cận đứng.
là tiệm cận ngang.
d) Tương tự ta có tiệm cận đứng là trục Oy, tiệm cận ngang là trục hoành Ox.
Nhận xét: Với hàm số có dạng với
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Tìm điều kiện của tham số để hàm số thoả mãn một điều kiện nào đó về số lượng các điểm cực trị (cực đại, cực tiểu).
- Dạng 2: Bài toán lãi kép
- Dạng 3: Tìm điều kiện của tham số để hàm số đồng biến trên một khoảng
- Giải câu 3 bài: Phương trình bậc hai với hệ số thực
- Giá trị lớn nhất, giá trị nhỏ nhất của số phức
- Dạng 3: Tính tích phân bằng phương pháp đưa về các phân thức có mẫu số là biểu thức bình phương
- Giải câu 1 bài 2: Cực trị của hàm số
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 4)
- Giải bài: Ôn tập chương 3 - nguyên hàm, tích phân và ứng dụng
- Dạng 1: Chứng minh đẳng thức chứa lôgarit
- Giải câu 5 bài: Ôn tập chương 4
- Giải Bài 3: Lôgarit