Giải câu 2 bài: Khái niệm về khối đa diện
4 lượt xem
Bài 2 :Trang 12-sgk hình học12
Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của một số lẻ mặt thì tổng số các đỉnh của nó phải là một số chẵn. Cho ví dụ.
Bài làm:
Gọi D là số đỉnh của đa diện và mỗi đỉnh của nó là đỉnh chung của một số lẻ (2n+1) mặt thì tổng số mặt của nó là (2n+1)D.
Vì mỗi cạnh là chung cho hai mặt nên số cạnh của đa diện là
Vì C là số nguyên nên (2n+1)D chia hết cho 2. Mà (2n+1) là số lẻ nên D phải chia hết cho 2 hay D là số chẵn.
Vậy tổng số đỉnh của nó phải là một số chẵn.
Ví dụ: Tứ diện có 4 đỉnh, mỗi đỉnh là đỉnh chung của 3 mặt.
Hình lập phương có 8 đỉnh, mỗi đỉnh là đrinh chung của 3 mặt.
Xem thêm bài viết khác
- Giải bài 2: Khối đa diện lồi và khối đa diện đều
- Giải bài 1: Khái niệm về mặt tròn xoay
- Giải câu 6 bài: Mặt cầu
- Giải câu 9 bài: Khái niệm về mặt tròn xoay
- Dạng 3: Viết phương trình hình chiếu của đường thẳng (d) lên mặt phẳng (P).
- Giải câu 10 bài: Phương trình đường thẳng trong không gian
- Giải câu 4 bài: Khái niệm về mặt tròn xoay
- Dạng 3: Viết phương trình mặt phẳng (P) đi qua hai điểm và vuông góc với mặt phẳng (Q).
- Giải câu 10 bài: Phương trình mặt phẳng
- Giải bài 3: Khái niệm về thể tích của khối đa diện
- Giải câu 3 bài: Khối đa diện lồi và khối đa diện đều
- Giải câu 4 bài: Khái niệm về thể tích của khối đa diện