Giải câu 2 bài: Khái niệm về khối đa diện
5 lượt xem
Bài 2 :Trang 12-sgk hình học12
Chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của một số lẻ mặt thì tổng số các đỉnh của nó phải là một số chẵn. Cho ví dụ.
Bài làm:
Gọi D là số đỉnh của đa diện và mỗi đỉnh của nó là đỉnh chung của một số lẻ (2n+1) mặt thì tổng số mặt của nó là (2n+1)D.
Vì mỗi cạnh là chung cho hai mặt nên số cạnh của đa diện là
Vì C là số nguyên nên (2n+1)D chia hết cho 2. Mà (2n+1) là số lẻ nên D phải chia hết cho 2 hay D là số chẵn.
Vậy tổng số đỉnh của nó phải là một số chẵn.
Ví dụ: Tứ diện có 4 đỉnh, mỗi đỉnh là đỉnh chung của 3 mặt.
Hình lập phương có 8 đỉnh, mỗi đỉnh là đrinh chung của 3 mặt.
Xem thêm bài viết khác
- Dạng 4: Vị trí tương đối của hai mặt phẳng
- Giải câu 10 bài: Phương trình đường thẳng trong không gian
- Giải câu 1 bài: Khái niệm về thể tích của khối đa diện
- Giải câu 4 bài: Phương trình đường thẳng trong không gian
- Giải câu 6 bài: Hệ tọa độ trong không gian
- Giải câu 5 bài: Khái niệm về mặt tròn xoay
- Giải câu 10 bài: Phương trình mặt phẳng
- Giải câu 1 bài: Phương trình đường thẳng trong không gian
- Giải bài 1: Hệ tọa độ trong không gian
- Giải câu 4 bài: Khái niệm về mặt tròn xoay
- Dạng 1: Vết phương trình đường thẳng d đi qua A và vuông góc với hai đường thẳng $d_{1}$ và $d_{2}$.
- Dạng 2: Viết phương trình đường thẳng d là giao tuyến của hai mặt phẳng