-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải câu 6 bài: Mặt cầu
Câu 6: Trang 49 - sgk hình học 12
Cho mặt cầu (O; R) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ hai tiếp tuyến của mặt cầu cắt (P) tại A và B.
Chứng minh rằng: .
Bài làm:
Mặt cầu tiếp xúc với mp(P) tại I và
=> AI là tiếp tuyến tại I của mặt cầu.
=> AM và AI là hai tiếp tuyến của mặt cầu.
=> AM = AI.
Tương tự: BM = BI
=>
=> . (đpcm)
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Dạng 1: Phương trình mặt phẳng (P) đi qua 1 điểm và biết VTPT hoặc cặp VTCP
- Dạng 3: Viết phương trình mặt phẳng (P) đi qua hai điểm và vuông góc với mặt phẳng (Q).
- Giải câu 4 bài: Khái niệm về mặt tròn xoay
- Giải câu 2 bài: Khái niệm về thể tích của khối đa diện
- Giải câu 10 bài: Mặt cầu
- Giải câu 37 bài: Ôn tập chương II
- Dạng 1: Khối lăng trụ có góc giữa đường thẳng và mặt phẳng.
- Giải bài 1: Khái niệm về mặt tròn xoay
- Dạng 2: Lăng trụ đứng có góc giữa hai mặt phẳng
- Giải câu 9 bài: Mặt cầu
- Giải câu 8 bài: Mặt cầu
- Giải câu 5 bài: Khái niệm về thể tích của khối đa diện
Nhiều người quan tâm