-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Dạng 3: Viết phương trình mặt phẳng (P) đi qua hai điểm và vuông góc với mặt phẳng (Q).
Dạng 3: Viết phương trình mặt phẳng (P) đi qua hai điểm và vuông góc với mặt phẳng (Q).
Bài làm:
I.Phương pháp giải
Ta viết phương trình mặt phẳng (P) đi qua hai điểm và vuông góc với mặt phẳng (Q): Ax + By + Cz + D = 0.
Tìm vecto pháp tuyến của (P): .
Mặt phẳng (P) đi qua điểm M có vecto pháp tuyến là như dạng 1.
II.Bài tập vận dụng
Bài tập 1: Cho mặt phẳng (P) có phương trình 2x + 3y - 4z - 2 = 0 và điểm A(0;2;0). Viết phương trình mặt phẳng (m) đi qua OA và vuông góc với (P) với O là gốc toạ độ.
Bài giải:
Ta có:
Hai vecto có giá song song được chứa trong (m) là : và
Suy ra mặt phẳng (m) có vecto pháp tuyến là: .
Do đó mặt phẳng (m) đi qua O và có vecto pháp tuyến có phương trình:
-8x - 4z = 0 2x + z = 0.
Bài tập 2: Viết phương trình mặt phẳng (P) đi qua ba điểm A(1;0;0), B(0;-3;0), C(0;0;-2).
Bài giải:
Ta áp dụng phương trình mặt phẳng theo đoạn chắn ta được phương trình (P) có dạng:
.
Xem thêm bài viết khác
- Giải câu 1 bài: Phương trình mặt phẳng
- Giải bài 2: Khối đa diện lồi và khối đa diện đều
- Giải câu 8 bài: Mặt cầu
- Giải câu 5 bài: Phương trình mặt phẳng
- Giải câu 10 bài: Ôn tập chương I: Khối đa diện
- Giải câu 2 bài: Khái niệm về thể tích của khối đa diện
- Dạng 1: Phương trình mặt phẳng (P) đi qua 1 điểm và biết VTPT hoặc cặp VTCP
- Giải câu 6 bài: Phương trình đường thẳng trong không gian
- Giải câu 10 bài: Phương trình đường thẳng trong không gian
- Giải câu 12 bài: Ôn tập chương I: Khối đa diện
- Giải câu 7 bài: Phương trình mặt phẳng
- Giải câu 9 bài: Khái niệm về mặt tròn xoay