-
Tất cả
- Tài liệu hay
- Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
- Tiếng Anh
- Vật Lý
- Hóa Học
- Sinh Học
- Lịch Sử
- Địa Lý
- GDCD
- Khoa Học Tự Nhiên
- Khoa Học Xã Hội
Giải câu 8 bài: Mặt cầu
Câu 8: Trang 49 - sgk hình học 12
Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì tổng các cặp cạnh đối diện của tứ diện bằng nhau.
Bài làm:
Giả sử tứ diện ABCD có mặt cầu tiếp xúc với cả 6 cạnh của tứ diện; tiếp xúc với AB, AC, AD, CB, CD, BD lần lượt tại M, N, P, Q, R, S.
Vì các đoạn thẳng kẻ từ một điểm đến tiếp điểm của các tiếp tuyến đó bằng nhau
=>
<=>
<=> (đpcm).
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Dạng 1: Tìm toạ độ của một vectơ và các yếu tố liên quan đến vectơ thoả mãn một số điều kiện cho trước
- Giải bài 1: Khái niệm về khối đa diện
- Giải câu 9 bài: Phương trình đường thẳng trong không gian
- Giải bài 2: Phương trình mặt phẳng
- Giải câu 9 bài: Khái niệm về mặt tròn xoay
- Giải câu 7 bài: Phương trình mặt phẳng
- Giải câu 5 bài: Ôn tập chương I: Khối đa diện
- Giải câu 6 bài: Khái niệm về thể tích của khối đa diện
- Giải câu 9 bài: Ôn tập chương I: Khối đa diện
- Giải câu 1 bài: Mặt cầu
- Dạng 4: Vị trí tương đối của hai mặt phẳng
- Dạng 1: Vết phương trình đường thẳng d đi qua A và vuông góc với hai đường thẳng $d_{1}$ và $d_{2}$.