Giải Câu 62 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

8 lượt xem

Câu 62: Trang 91 - SGK Toán 9 tập 2

a) Vẽ tam giác cạnh \(a = 3cm\).

b) Vẽ đường tròn ngoại tiếp tam giác đều \(ABC\). Tính \(R\).

c) Vẽ đường tròn nội tiếp tam giác đều \(ABC\). Tính \(r\).

d) Vẽ tiếp tam giác đều ngoại tiếp đường tròn \((O;R)\).

Bài làm:

a) Vẽ tam giác đều có cạnh bằng \(3cm\) (dùng thước có chia khoảng và compa)

b) Tâm của đường tròn ngoại tiếp tam giác đều \(ABC\) là giao điểm của ba đường trung trực (đồng thời là ba đường cao, ba trung tuyến, ba phân giác của tam giác đều \(ABC\)).

Ta có: \(\frac{2}{3}\)\(AA'\) = \(\frac{2}{3}\). \(\frac{AB\sqrt{3}}{2}\) = \(\frac{2}{3}\) . \(\frac{3\sqrt{3}}{2}\) = \(\sqrt3 (cm)\).

c) Đường tròn nội tiếp tiếp xúc ba cạnh của tam giác đều \(ABC\) tại các trung điểm \(A', B', C'\) của các cạnh.

\(\frac{1}{3}\)\( AA'\) =\(\frac{1}{3}\) \(\frac{3\sqrt{3}}{2}\) = \(\frac{\sqrt{3}}{2}(cm)\)

d) Vẽ các tiếp tuyến với đường tròn tại \(A,B,C\). Ba tiếp tuyến này cắt nhau tại \(I, J, K\). Ta có \(∆IJK\) là tam giác đều ngoại tiếp .

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội