Dạng 4: Tính đơn điệu của hàm hợp
Dạng 4: Tìm điều kiện của tham số để hàm số
Bài làm:
I. Phương pháp giải:
Bước 1: Đặt
Bước 2: Tìm tập giá trị của hàm
- Hàm
đồng biến trên $(a;b)$ thì
- Hàm
nghịch biến trên $(a;b)$ thì
II. Bài tập áp dụng
Bài tập 1: Tìm
Bài giải:
Đặt
đồng biến trên khoảng $(0;\frac{\pi}{4})$. .
Bài toán tương đương với tìm
Bài tập 2: Tìm
Bài giải:
Đặt
nghịch biến trên khoảng $(0;\frac{\pi}{2})$. .
Bài toán tương đương với tìm
Ta có
Xem thêm bài viết khác
- Giải câu 4 bài: Hàm số lũy thừa
- Giải câu 4 bài: Hàm số mũ. Hàm số Lôgarit
- Giải câu 1 bài 3: Lôgarit
- Giải câu 2 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Tìm giá trị của tham số sao cho hàm số thoả mãn một giá trị nào đó liên quan đến GTLN và GTNN trên đoạn [a; b].
- Giải bài 3: Ứng dụng của tích phân trong hình học
- Giải câu 5 bài: Ôn tập chương 3
- Giải câu 6 bài 2: Cực trị của hàm số
- Giải câu 2 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Giải câu 2 bài: Ôn tập chương 4
- Dạng 2: Tính tích phân của những phân thức có bậc tử và bậc mẫu chênh lệch lớn.
- Giải bài 4: Hàm số mũ. Hàm số Lôgarit