-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải câu 2 bài: Ôn tập chương 4
Câu 2: Trang 143-sgk giải tích 12
Thế nào là phần thực phần ảo, mô đun của một số phức? Viết công thức tính mô đun của số phức theo phần thực phần ảo của nó?
Bài làm:
- Mỗi biểu thức dạng
, (
) là một số phức. gọi là phần thực của số phức
.gọi là phần ảo của số phức
.- Ký hiệu tập số phức:
- Môđun của số phức
được biểu diễn bởi điểm M(a;b) là độ dài vectơ
. - Ký hiệu:
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Giải câu 1 bài 2: Cực trị của hàm số
- Biểu diễn hình học của số phức
- Giải câu 4 bài: Hàm số lũy thừa
- Dạng 1: Chứng minh đẳng thức chứa lôgarit
- Giải câu 4 bài: Ôn tập chương 2
- Tìm điều kiện của tham số để hàm số thoả mãn một điều kiện nào đó về số lượng các điểm cực trị (cực đại, cực tiểu).
- Dạng 1: Tính tích phân dùng phương pháp đồng nhất hệ số với phân thức có mẫu ở dạng tích
- Giải bài 2: Tích phân
- Giải câu 4 bài: Số phức
- Giải câu 3 bài: Phương trình mũ. Phương trình Lôgarit
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 2)
- Tìm giá trị của tham số sao cho hàm số thoả mãn một giá trị nào đó liên quan đến GTLN và GTNN trên đoạn [a; b].