Dạng 3: Tìm điều kiện của tham số để hàm số đồng biến trên một khoảng
Dạng 3: Tìm điều kiện của tham số để hàm số đồng biến trên $(a;b)$.
Bài làm:
I. Phương pháp giải:
Hàm số đã cho đồng biến trên khi và chỉ khi $f'(x)\geq 0$, $\forall x\in (a;b)$.
Giả sử tương đương với $g(x)\geq m$ ( $m$ là tham số của bài toán).
Khi đó, yêu cầu của bài toán trở thành:
(1).
Ta có thể giải (1) bằng phương pháp hình học
- Đầu tiên ta vẽ đồ thị hoặc lập bảng biến thiên của hàm số , $x\in (a;b)$;
- Điều kiện (1) tương đương với: đồ thị (C) nằm từ đường thẳng trở lên.
II. Bài tập áp dụng
Bài tập 1: Tìm tất cả các giá thực của sao cho hàm số $y=2x^3-mx^2+2x$ đồng biến trên khoảng $(-2;0)$?
Bài giải: Ta có . Yêu cầu của bài toán tương đương với:
.
Xét hàm .
Ta có .
.
Ta có bảng biến thiên
Suy ra .
Bài tập 2: Tìm tất cả các giá thực của sao cho hàm số $y=x^3+2x^2+mx+2$ nghịch biến trên khoảng $(-1;1)$?
Bài giải: Ta có . Yêu cầu của bài toán tương đương với:
.
Xét hàm .
Ta có bảng biến thiên:
Vậy
Xem thêm bài viết khác
- Giải câu 4 bài: Ôn tập chương 4
- Giải câu 2 bài 2: Sự đồng biến, nghịch biến của hàm số
- Giải câu 4 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 7)
- Giải bài: Ôn tập chương 2 - Hàm số lũy thừa. Hàm số mũ và hàm lôgarit
- Dạng 1: Giải bất phương trình mũ và lôgarit bằng phương pháp đặt ẩn phụ
- Giải câu 1 bài: Cộng, trừ và nhân số phức
- Tìm giá trị của tham số sao cho hàm số thoả mãn một giá trị nào đó liên quan đến GTLN và GTNN trên đoạn [a; b].
- Giải câu 6 bài: Tích phân
- Dạng 2: Tính tích phân của những phân thức có bậc tử và bậc mẫu chênh lệch lớn.
- Dạng 1: Tính tích phân dùng phương pháp đồng nhất hệ số với phân thức có mẫu ở dạng tích
- Giải câu 1 bài: Ôn tập chương 2