Dạng 3: Tìm điều kiện của tham số để hàm số đồng biến trên một khoảng
Dạng 3: Tìm điều kiện của tham số để hàm số
đồng biến trên $(a;b)$.
Bài làm:
I. Phương pháp giải:
Hàm số đã cho đồng biến trên
khi và chỉ khi $f'(x)\geq 0$, $\forall x\in (a;b)$.
Giả sử
tương đương với $g(x)\geq m$ ( $m$ là tham số của bài toán).
Khi đó, yêu cầu của bài toán trở thành:
(1).
Ta có thể giải (1) bằng phương pháp hình học
- Đầu tiên ta vẽ đồ thị hoặc lập bảng biến thiên của hàm số
, $x\in (a;b)$; - Điều kiện (1) tương đương với: đồ thị (C) nằm từ đường thẳng
trở lên.
II. Bài tập áp dụng
Bài tập 1: Tìm tất cả các giá thực của
sao cho hàm số $y=2x^3-mx^2+2x$ đồng biến trên khoảng $(-2;0)$?
Bài giải: Ta có
. Yêu cầu của bài toán tương đương với:
![]()
.
Xét hàm
.
Ta có
.
.
Ta có bảng biến thiên

Suy ra
.
Bài tập 2: Tìm tất cả các giá thực của
sao cho hàm số $y=x^3+2x^2+mx+2$ nghịch biến trên khoảng $(-1;1)$?
Bài giải: Ta có
. Yêu cầu của bài toán tương đương với:
![]()
.
Xét hàm
.
Ta có bảng biến thiên:

Vậy ![]()
Xem thêm bài viết khác
- Giải bài: Ôn tập chương 4 - số phức
- Giải câu 2 bài: Ứng dụng của tích phân trong hình học
- Giải câu 3 bài: Phương trình bậc hai với hệ số thực
- Giải bài: Ôn tập chương 3 - nguyên hàm, tích phân và ứng dụng
- Giải câu 4 bài: Ôn tập chương 2
- Dạng 3: Tính tích phân bằng phương pháp đưa về các phân thức có mẫu số là biểu thức bình phương
- Giải câu 3 bài: Phương trình mũ. Phương trình Lôgarit
- Giải câu 4 bài: Cộng, trừ và nhân số phức
- Dạng 1: Chứng minh đẳng thức chứa lôgarit
- Giải câu 6 bài: Ôn tập chương 3
- Giải câu 6 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Giải câu 5 bài: Ôn tập chương 2