Giải câu 1 bài: Ôn tập chương 3
2 lượt xem
Câu 1:Trang 126-sgk giải tích 12
a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng.
b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.
Bài làm:
a) Cho hàm số f(x) xác định trên K ( k là nửa khoảng hay đoạn của trục số).
Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu
Định lý
Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì:
- Với mỗi hằng số C,
cũng là một nguyên hàm của hàm số trên f(x) trên K. - G(x) cũng là một nguyên hàm của hàm số f(x) trên K thì tồn tại một hằng số C sao cho:
b)
Định lí 2
- Nếu hai hàm số
và $v=v(x)$ có đạo hàm liên tục trên K thì:
- Hay:
với $ v'(x)dx=dv,u'(x)dx=du$
Ví dụ minh họa:
Tính:
Lời giải:
Đặt
=>
$v=\frac{x^{2}}{2}
Ta có:
<=>
Xem thêm bài viết khác
- Giải câu 4 bài: Lôgarit
- Giải bài 3: Phép chia số phức
- Giải câu 1 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Giải câu 6 bài: Tích phân
- Giải câu 1 bài: Hàm số lũy thừa
- Giải câu 7 bài: Ôn tập chương 2
- Giải câu 2 bài: Tích phân
- Giải câu 2 bài: Phương trình bậc hai với hệ số thực
- Giải câu 3 bài: Hàm số lũy thừa
- Dạng 1: Chứng minh đẳng thức chứa lôgarit
- Đường thẳng đi qua các điểm cực trị
- Giải câu 4 bài: Ứng dụng của tích phân trong hình học