Giải Câu 10 Bài Câu hỏi ôn tập chương 3
Câu 10: Trang 120 - SGK Hình học 11
Chứng minh rằng tập hợp các điểm cách đều ba đỉnh của một tam giác
Bài làm:
- Lấy một điểm
bất kì trong không gian sao cho \(MA = MB = MC\). Từ kẻ \(MO\) vuông góc với \((ABC)\). Các tam giác vuông \(MOA\), \(MOB\), \(MOC\) bằng nhau, suy ra \(OA = OB = OC\).
Do đó
- Ngược lại, lấy một điểm
, với là đường thẳng qua tâm đường tròn ngoại tiếp tam giác $ABC$ và $\perp (ABC)$
Nối
Do
Tức là điểm
Kết luận: Tập hợp các điểm cách đều ba đỉnh của tam giác
Xem thêm bài viết khác
- Giải Câu 5 Bài Ôn tập cuối năm
- Giải Bài 3: Đường thẳng vuông góc với mặt phẳng
- Giải câu 4 bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải Câu 7 Bài Câu hỏi ôn tập chương 3
- Giải Câu 1 Bài 4: Hai mặt phẳng vuông góc
- Giải Câu 7 Bài 5: Khoảng cách
- Giải câu 2 bài 6: Khái niệm về phép dời hình và hai hình bằng nhau
- Giải Câu 10 Bài 4: Hai mặt phẳng vuông góc
- Giải Câu 6 Bài 2: Hai đường thẳng vuông góc
- Giải câu 1 bài 7: Phép vị tự
- Giải câu 2 bài 5: Phép quay
- Giải câu 1 bài 4: Phép đối xứng tâm