Giải Câu 10 Bài Câu hỏi ôn tập chương 3

Câu 10: Trang 120 - SGK Hình học 11

Chứng minh rằng tập hợp các điểm cách đều ba đỉnh của một tam giác là đường vuông góc với mặt phẳng \((ABC)\) và đi qua tâm đường tròn ngoại tiếp tam giác .

Bài làm:

  • Lấy một điểm bất kì trong không gian sao cho \(MA = MB = MC\). Từ kẻ \(MO\) vuông góc với \((ABC)\). Các tam giác vuông \(MOA\), \(MOB\), \(MOC\) bằng nhau, suy ra \(OA = OB = OC\).

Do đó là tâm đường tròn ngoại tiếp tam giác \(ABC\). Vậy các điểm \(M\) cách đều ba đỉnh của tam giác \(ABC\) nằm trên đường thẳng \(d\) đi qua tâm của đường tròn ngoại tiếp tam giác \(ABC\) và vuông góc với mặt phẳng \((ABC)\).

  • Ngược lại, lấy một điểm , với là đường thẳng qua tâm đường tròn ngoại tiếp tam giác $ABC$ và $\perp (ABC)$

Nối ,

Do chung và \(OA = OB = OC\) nên các tam giác vuông \(M’OA, M’OB, M’OC\) bằng nhau, suy ra \(M’A = M’B = M’C\),

Tức là điểm cách đều ba đỉnh \(A, B, C\) của tam giác \(ABC\).

Kết luận: Tập hợp các điểm cách đều ba đỉnh của tam giác là đường thẳng vuông góc với mặt phẳng \((ABC)\) và đi qua tâm đường tròn ngoại tiếp tam giác .

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội