Giải Câu 17 Bài 3: Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác sgk Toán 7 tập 2 Trang 63

2 lượt xem

Câu 17: Trang 63 - SGK Toán 7 tập 2

Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC.

a) So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA.

b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB.

c) Chứng minh bất đẳng thức MA + MB < CA + CB.

Bài làm:

a) Trong ΔAMI ta có: MA < MI + IA (bất đẳng thức tam giác)

Cộng MB vào hai vế ta được:

MA + MB < MB + MI + IA

Vì MB + MI = IB (do M nằm giữa B và I) nên MA + MB < IB + IA (1) (đpcm)

b) Trong ΔBIC ta có: IB < IC + CB (bất đẳng thức tam giác)

Cộng IA vào hai vế ta được:

IB + IA < IA + IC + CB

Vì IA + IC = CA (do I nằm giữa A và C) nên IB + IA < CA + CB (2) (đpcm)

c) Từ (1) và (2) và theo tính chất bắc cầu ta suy ra:

MA + MB < CA + CB (đpcm)

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội