Giải Câu 5 Bài 5: Khoảng cách

Câu 5: Trang 119 - SGK Hình học 11

Cho hình lập phương cạnh \(a\).

a) Chứng minh rằng vuông góc với mặt phẳng \((BA'C')\).

b) Tính khoảng cách giữa hai mặt phẳng và \((ACD')\).

c) Tính khoảng cách giữa hai đường thẳng và \(CD'\).

Bài làm:

a) Có thuộc trục của tam giác \(A'BC'\). (1)

(đường chéo các hình vuông bằng nhau) \(\Rightarrow D\) cũng thuộc trục của tam giác \(A'BC' \) (2)

Từ (1) và (2) suy ra thuộc trục của $(A'BC')$

vuông góc với \((A'BC')\).

b) Chứng minh tương tự ta được

Hai mặt phẳng và \((ACD')\) cùng vuông góc với \(B'D\) (tại \(I\) và \(H\)) nên chúng song song với nhau và khoảng cách giữa chúng bằng \(IH\).

Ta có:

, \(O'\) là trung điểm của \(B'D'\) nên theo định lí Ta lét thì \(I\) là trung điểm của \(B'H\) hay \(IB'=IH\) (3)

, \(O\) là trung điểm của \(BD\) nên theo định lí Ta lét thì \(H\) là trung điểm của \(DI\) hay \(HI=HD\) (4)

Từ (3) và (4) suy ra:

c) ; \(CD' ⊂ (ACD')\), mà hai mặt phẳng này song song

Do đó,

(Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó).

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội