-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải câu 3 bài 4: Hai mặt phẳng song song
Câu 3: Trang 71 - SGK hình học 11
Cho hình hộp ABCD.A’B’C’D’.
a) chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song song với nhau.
b) Chứng minh rằng đường chéo AC’ đi qua trọng tâm G1 và G2 lần lượt của hai tam giác BDA’ và B’D’C.
c) Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.
d) Gọi O và I lần lượt là tâm các hình bình hành ABCD và ∆A’C’C. Xác định thiết diện của mặt phẳng (A’IO) với hình hộp đã cho.
Bài làm:
Theo giả thiết ta có hình vẽ sau:
a) Do ABCDA'B'C'D' là hình hộp chữ nhật, ta có:
A’B // D’C và D’C ⊂ (B’D’C) => A’B // (B’D’C) (1)
BD // B’D’ và B’D’ ⊂ (B’D’C) => BD // (B’D’C) (2)
A’B ⊂ (BDA’) và BD ⊂ (BDA’) (3)
Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C). (đpcm)
b) Gọi O là giao điểm của hai đường chéo AC, BD của hình bình bình hành ABCD => A’O ⊂ (A’ACC’).
Trong mặt phẳng (A’ACC’) hai đường thẳng A’O và AC’ cắt nhau tại điểm G1, G1 ∈ A’O và A’O ⊂ (BDA’)
=> G1 ∈ (BDA’),G1 ∈ AC’
Vậy G1 ∈ AC’ ∩(BDA’)
Tứ giác ACC’A’ là hình bình hành, giao điểm I của hai đường chéo A’C và AC’ là trung điểm của mỗi đường.
Xét tam giác AA’C, các trung tuyến A’O và AI cắt nhau tại G1. Vậy G1 là trọng tâm của ∆AA’C cho ta OG1/OA' = 1/3 , A’O cũng là trung tuyến của ∆BDA’ nên tỉ số OG1/OA' = 1/3 chứng tỏ G1 là trọng tâm của tam giác BDA’.
Chứng minh tương tự đối với điểm G2.
c) Vì G1 là trọng tâm của ∆AA’C nên .
Vì I là trung điểm của AC’ nên
Từ các kết quả này, ta có :
Chứng minh tương tự ta có :
Suy ra : AG1 = GG2 = G2C’ = .
d) Thiết diện của mặt phẳng (A'IO) với hình hộp chính là hình bình hành AA’C’C.
Xem thêm bài viết khác
- Giải câu 3 bài 2: Phép tịnh tiến
- Giải Câu 11 Bài Câu hỏi trắc nghiệm chương 3
- Giải Câu 7 Bài Câu hỏi trắc nghiệm chương 3
- Giải câu 1 bài 4: Phép đối xứng tâm
- Giải Bài Ôn tập cuối năm
- Giải Câu 5 Bài 2: Hai đường thẳng vuông góc
- Giải Bài 3: Đường thẳng vuông góc với mặt phẳng
- Giải bài 2: Phép tịnh tiến
- Giải Câu 4 Bài: Bài tập ôn tập chương 3
- Giải Câu 3 Bài 1: Vecto trong không gian
- Giải câu 7 bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải Câu 7 Bài Câu hỏi ôn tập chương 3