Giải Câu 6 Bài: Bài tập ôn tập chương 3

7 lượt xem

Câu 6: Trang 122 - SGK Hình học 11

Cho khối lập phương ABCD.A'B'C'D' cạnh a.

a) Chứng minh BC' vuông góc với mặt phẳng (A'B'CD)

b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'

Bài làm:

a) Ta có tứ giác là hình vuông nên

(1)

Mặt khác

(2)

Từ (1) và (2) suy ra:

b) Do nên mặt phẳng \((AB’D’)\) là mặt phẳng chứa \(AB’\) và song song với \(BC’\).

Ta tìm hình chiếu của trên \(mp (AB’D’)\)

Gọi là tâm của các mặt bên \(ADD'A’\) và \(BCC'B’\)

Từ kẻ \(FI ⊥ B’E\). Ta có \(BC’ //AD'\) mà \(BC’ ⊥ (A’B’CD)\)

và \(IF ⊂(A’B’CD)\)

(3)

(4)

Từ (3) và (4) suy ra :

Vậy là hình chiếu của \(F\) trên \(mp (AB’D’)\). Qua ta dựng đường thẳng song song với \(BC’\) thì đường thẳng này chính là hình chiếu của \(BC’\) trên mp \((AB’D’)\)

Đường thẳng qua song song với \(BC’\) cắt \(AB’\) tại \(K\). Qua \(K\) kẻ đường thẳng song song với \(IF\), đường này cắt \(BC’\) tại \(H\). \(KH\) chính là đường vuông góc chung của \(AB’\) và \(BC’\). Thật vậy:

và \(KH // IF\) suy ra \(KH ⊥ AB'\)

\(\left. \matrix{
BC' \bot (A'B'CD) \hfill \cr
{\rm{IF}} \subset {\rm{(A'B'CD)}} \hfill \cr} \right\} \Rightarrow \left. \matrix{
{\rm{IF}} \bot {\rm{BC'}} \hfill \cr
{\rm{KH//IF}} \hfill \cr} \right\} \Rightarrow KH \bot BC'\)

Tam giác vuông góc tại \(F\), \(FI\) là đường cao thuộc cạnh huyền nên

với

\(\left\{ \matrix{
FB' = {{a\sqrt 2 } \over 2} \hfill \cr
{\rm{EF = a}} \hfill \cr} \right.\)

Ta tính ra:

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội