Giải Câu 2 Bài 5: Khoảng cách
Câu 2: Trang 119 - SGK Hình học 11
Cho tứ diện có \(SA\) vuông góc với mặt phẳng \((ABC)\). Gọi \(H, K\) lần lượt là trực tâm của tam giác \(ABC\) và \(SBC\).
a) Chứng minh ba đường thẳng đồng quy.
b) Chứng minh rằng vuông góc với mặt phẳng \((BHK)\) và \(HK\) vuông góc với mặt phẳng \((SBC)\).
c) Xác định đường vuông góc chung của và \(SA\).
Bài làm:
a) Chứng minh đồng qui
Trong , gọi \(E = AH ∩ BC\).
là trực tâm của tam giác \(ABC\) nên \(AE\bot BC\) (1)
(2)
Từ (1) và (2) suy ra \(\Rightarrow BC ⊥ SE\).
Vì là trực tâm của tam giác \(SBC(gt)\Rightarrow SE \) đi qua
\(\Rightarrow AH, BC, SK\) đồng quy tại \(E\).
b) Chứng minh
- Vì H là trực tâm tam giác ABC nên
. (3)
Mà là hình chiếu vuông góc của $SA$ lên $(ABC)$ (do $SA\perp (ABC)-gt$)
=> (định lý ba đường vuông góc) (4)
Từ (3)(4) suy ra: .
- Ta có:
=>$(BHK)\perp (SBC)$ (5)
Vì: (6)
Từ (5) (6) và => $HK\perp (SBC)$
c) Xác định đường vuông góc chung của
Ta có: (tính chất trực tâm H của tam giác ABC)
mặt khác:
là đường vuông góc chung của \(BC\) và \(SA\).
Xem thêm bài viết khác
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc
- Giải Bài 6: Khái niệm về phép dời hình và hai hình bằng nhau
- Giải câu 2 bài 4: Hai mặt phẳng song song
- Giải Câu 5 Bài Câu hỏi ôn tập chương 3
- Giải câu 2 bài 3: Phép đối xứng trục
- Giải bài 3: Đường thẳng và mặt phẳng song song
- Giải câu 2 bài 3: Đường thẳng và mặt phẳng song song
- Giải câu 1 bài 8: Phép đồng dạng
- Giải Câu 6 Bài Câu hỏi trắc nghiệm chương 3
- Giải bài 5: Phép chiếu song song. Hình biểu diễn của một hình không gian
- Giải Bài Câu hỏi ôn tập chương 3
- Giải bài: Ôn tập chương II