Giải Câu 6 Bài 3: Đường thẳng vuông góc với mặt phẳng
Câu 6: Trang 105 - SGK Hình học 11
Cho hình chóp
có đáy là hình thoi \(ABCD\) và có cạnh \(SA\) vuông góc với mặt phẳng \((ABCD)\). Gọi \(I\) và \(K\) là hai điểm lần lượt lấy trên hai cạnh \(SB\) và \(SD\) sao cho \(\frac{SI}{SB}=\frac{SK}{SD}.\) Chứng minh:
a)
vuông góc với \(SC\);
b)
vuông góc với mặt phẳng \((SAC)\).
Bài làm:

a) Ta có:
(tính chất đường chéo hình thoi)
Lại có:
(gt)
![]()
Ta có: 
mà
.
b) Theo giả thiết
theo định lí ta lét ta có \(IK//BD\)
Từ chứng minh câu a, ta có: ![]()
![]()
Xem thêm bài viết khác
- Giải Câu 10 Bài 4: Hai mặt phẳng vuông góc
- Giải Câu 2 Bài Ôn tập cuối năm
- Giải câu 1 bài 2: Phép tịnh tiến
- Giải Câu 3 Bài Câu hỏi ôn tập chương 3
- Giải Câu 6 Bài: Bài tập ôn tập chương 3
- Giải Câu 4 Bài Câu hỏi ôn tập chương 3
- Giải câu 3 bài 4: Hai mặt phẳng song song
- Giải Câu 9 Bài 4: Hai mặt phẳng vuông góc
- Giải bài 3: Đường thẳng và mặt phẳng song song
- Giải Câu 11 Bài Câu hỏi trắc nghiệm chương 3
- Giải câu 7 bài 1: Đại cương về đường thẳng và mặt phẳng
- Giải bài 2: Phép tịnh tiến