Giải Câu 2 Bài 3: Đường thẳng vuông góc với mặt phẳng
Câu 2: Trang 104 - SGK Hình học 11
Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.
a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)
b) Gọi AH là đường cao của tam giác ADI, chứng minh rằng AH vuông góc với mặt phẳng (BCD).
Bài làm:

a)
cân tại A có I là trung điểm của BC (gt)
=>
vừa là trung tuyến vừa là đường cao của tam giác.
=> ![]()
Tương tự, với
cân tại D, I là trung điểm BC
=> ![]()
Ta có:
(Tính chất: đường thẳng vuông góc với mặt phẳng nếu nó vuông góc với hai đường thẳng cắt nhau trong mặt phẳng)
b) Ta có:
(cmt) => $BC\perp AH$ (Tính chất: đường thẳng vuông góc với mặt phẳng thì vuông góc với mọi đường nằm trong mặt)
Ta có:
(tính chất)
Xem thêm bài viết khác
- Giải Câu 1 Bài 2: Hai đường thẳng vuông góc
- Giải câu 2 bài 5: Phép quay
- Giải câu 3 bài 4: Hai mặt phẳng song song
- Giải Câu 2 Bài Câu hỏi ôn tập chương 3
- Giải Câu 7 Bài Câu hỏi trắc nghiệm chương 3
- Giải Câu 9 Bài Câu hỏi trắc nghiệm chương 3
- Giải câu 1 bài 4: Hai mặt phẳng song song
- Giải Câu 3 Bài 5: Khoảng cách
- Giải Câu 6 Bài Câu hỏi ôn tập chương 3
- Giải bài: Ôn tập chương II
- Giải Câu 1 Bài: Bài tập ôn tập chương 3
- Giải câu 4 bài 2: Phép tịnh tiến