-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải Câu 2 Bài 3: Đường thẳng vuông góc với mặt phẳng
Câu 2: Trang 104 - SGK Hình học 11
Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.
a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)
b) Gọi AH là đường cao của tam giác ADI, chứng minh rằng AH vuông góc với mặt phẳng (BCD).
Bài làm:
a) cân tại A có I là trung điểm của BC (gt)
=> vừa là trung tuyến vừa là đường cao của tam giác.
=>
Tương tự, với cân tại D, I là trung điểm BC
=>
Ta có:
(Tính chất: đường thẳng vuông góc với mặt phẳng nếu nó vuông góc với hai đường thẳng cắt nhau trong mặt phẳng)
b) Ta có:
(cmt) =>
Ta có:
(tính chất)
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Giải Câu 5 Bài 2: Hai đường thẳng vuông góc
- Giải Câu 5 Bài Câu hỏi trắc nghiệm chương 3
- Giải Câu 6 Bài Câu hỏi trắc nghiệm chương 3
- Giải Câu 2 Bài Câu hỏi ôn tập chương 3
- Giải Bài 5: Khoảng cách
- Giải Bài 6: Khái niệm về phép dời hình và hai hình bằng nhau
- Giải Câu 5 Bài 1: Vecto trong không gian
- Giải câu 3 bài 3: Đường thẳng và mặt phẳng song song
- Giải câu 4 bài 8: Phép đồng dạng
- Giải Câu 4 Bài 1: Vecto trong không gian
- Giải câu 2 bài 3: Đường thẳng và mặt phẳng song song
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc