Giải câu 6 trang 33 toán VNEN 9 tập 1

20 lượt xem

Câu 6: Trang 33 sách VNEN 9 tập 1

Chứng minh đẳng thức:

a) + $\frac{1}{3 + \sqrt{7}}$ - $\frac{6}{\sqrt{7} - 2}$ - $\frac{\sqrt{7} - 5}{2}$ = 4 + $\sqrt{11}$ - 3$\sqrt{7}$ ;

b) - $\frac{\sqrt{x} - \sqrt{y}}{2(\sqrt{x} + \sqrt{y})}$ - $\frac{y + x}{y - x}$ = $\frac{\sqrt{x} = \sqrt{y}}{\sqrt{x} - \sqrt{y}}$.

Bài làm:

a) Biến đôi vế trái ta được:

+ $\frac{1}{3 + \sqrt{7}}$ - $\frac{6}{\sqrt{7} - 2}$ - $\frac{\sqrt{7} - 5}{2}$

= + $\frac{3 - \sqrt{7}}{(3 + \sqrt{7})(3 - \sqrt{7})}$ - $\frac{6(\sqrt{7} + 2)}{(\sqrt{7} - 2)(\sqrt{7} + 2)}$ - $\frac{\sqrt{7} - 5}{2}$

= + $\frac{3 - \sqrt{7}}{9 - 7}$ - $\frac{6(\sqrt{7} + 2)}{7 - 4}$ - $\frac{\sqrt{7} - 5}{2}$

= 4 + + $\frac{3}{2}$ - $\frac{\sqrt{7}}{2}$ - 2$\sqrt{7}$ - 4 - $\sqrt{7}$ + $\frac{5}{2}$

= 4 + - $\frac{\sqrt{7}}{2}$ - 3$\sqrt{7}$

Sau khi biến đổi ta được vế trái bằng vế phải. Vậy đẳng thức được chứng minh.

b) Biến đổi vế trái ta được:

- $\frac{\sqrt{x} - \sqrt{y}}{2(\sqrt{x} + \sqrt{y})}$ - $\frac{y + x}{y - x}$

= - $\frac{(\sqrt{x} - \sqrt{y})^{2}}{2(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})}$ + $\frac{y + x}{x - y}$

= - $\frac{(\sqrt{x})^{2} - 2\sqrt{x}.\sqrt{y} + (\sqrt{y})^{2}}{2(x - y)}$ + $\frac{y + x}{x - y}$

= + $\frac{y + x}{x - y}$

= + $\frac{y + x}{x - y}$

=

=

= .

Sau khi biến đổi ta được vế trái bằng vế phải. Vậy đẳng thức được chứng minh.

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội