Giải Câu 2 Bài: Ôn tập cuối năm Phần Hình học sgk Toán 8 tập 2 Trang 131

10 lượt xem

Câu 2: Trang 131 - SGK Toán 8 tập 2

Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thẳng OA, OD và BC. Chứng minh rằng tam giác EFG là tam giác đều.

Bài làm:

Tam giác ABO đều nên tam giác CDO cũng đều, suy ra OD = OC.

∆AOD = ∆BOC (c.g.c) =>AD = BC.

EF là đường trung bình của tam giác AOD nên:

(1) (1)

CF là đường trung tuyến của tam giác đều CDO nên CF ⊥ DO, nghĩa là .Trong tam giác vuông CFB, FG là đường trung tuyến ứng với cạnh huyền nên:

(2)

Chứng minh tương tự ta cũng có:

(3)

Từ (1), (2), (3) suy ra EF = GF = EG nên tam giác EFG là tam giác đều.

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội