Giải câu 4 bài: Ôn tập chương II

1 lượt xem

Câu 4: Trang 78 - SGK hình học 11

Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn nửa đường thẳng Ax, By, Cz, Dt ở cùng phía đối với mặt phẳng (ABCD), song song với nhau và không nằm trong mặt phẳng (ABCD). Một mặt phẳng (β) lần lượt cắt Ax, By, Cz và Dt tại A’, B’, C’ và D’.

a) Chứng minh: mặt phẳng (Ax, By) song song với mặt phẳng (Cz, Dt)

b) Gọi I = AC ∩ BD, J = A’C’ ∩ B’D’. Chứng minh: IJ song song với AA’.

c) Cho AA’ = a, BB’ = b, CC’ = c. Hãy tính DD’.

Bài làm:

Theo giả thiết ta có hình sau:

a) ABDC là hình bình hành => AB // DC (1)

Theo giả thiết Ax // Dt (2)

Từ (1) và (2) => mặt phẳng (Ax, By) song song với mặt phẳng (Cz, Dt) (Đpcm)

b) Do (Ax, By) // (Cz, Dt)

=>A'B' //D’C’.

tương tự, ta có: A’D’ // B’C’

=>tứ giác A’B’C’D’ là hình bình hành,

Ta có: I là giao của AC và DB và J là giao của A'C' và B'D'

=> J là trung điểm của A’C’ và I là trung điểm của AC .

Mặt khác Ax // Cz nên tứ giác ACC’A’ là hình thang

=>IJ // AA’ (đpcm)

c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = (AA’ + CC’)

IJ cũng là đường trung bình của hình thang BDD’B’: IJ =( BB’ + DD’)

Từ đây suy ra: DD’ + BB’ = AA’ + CC’ DD’ = a + c – b

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội