Dạng 1: Tìm điều kiện của tham số để hàm phân thức đồng biến trên từng khoảng xác định
Phần tham khảo mở rộng
Dạng 1: Tìm điều kiện của tham số để hàm phân thức đồng biến trên từng khoảng xác định
Bài làm:
I. Phương pháp giải:
Ta có
Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi
Điều này tương đương với
Chú ý: Bài toán trên
II. Bài tập áp dụng
Bài tập 1: Tìm tất cả các giá thực của
Bài giải:
Ta có
Áp dụng lý thuyết trên, ta có điều kiện đối với m là:
Bài tập 2: Cho hàm số
Bài giải:
Ta có
Áp dụng lý thuyết trên, ta có điều kiện đối với m là:
Vì m nguyên nên các giá trị của m là: 1; 2; 3. Vậy số phần tử của S bằng 3.
Bài tập 3: Tìm tất cả các giá thực của
Bài giải:
Ta viết lại
Ta có
Hàm số trên đồng biến trên khoảng
Nghĩa là:
Xem thêm bài viết khác
- Giải câu 4 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Giải câu 1 bài: Cộng, trừ và nhân số phức
- Tìm tất cả những giá trị thực của tham số sao cho hàm số thỏa mãn một điều kiện nào đó về số lượng các điểm cực trị (cực đại, cực tiểu).
- Giải câu 3 bài 1: Sự đồng biến, nghịch biến của hàm số
- Giải câu 2 bài: Ứng dụng của tích phân trong hình học
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 1)
- Giải câu 1 bài: Phương trình mũ. Phương trình Lôgarit
- Giải bài 1: Nguyên hàm
- Giải câu 4 bài: Hàm số mũ. Hàm số Lôgarit
- Dạng 2: Tìm điều kiện của tham số để hàm số bậc 3 đồng biến trên tập số thực.
- Giải bài 1: Lũy thừa
- Giải câu 4 bài: Lũy thừa