-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Dạng 2: Tìm thể tích khối tròn xoay được giới hạn bởi đồ thị các hàm số y=f(x), y=g(x), y=h(x).
Dạng 2: Tìm thể tích khối tròn xoay được giới hạn bởi đồ thị các hàm số y=f(x), y=g(x), y=h(x).
Bài làm:
I.Phương pháp giải
Ta tính các giao điểm a, b, c là nghiệm của các phương trình f(x)=g(x), g(x)=h(x), h(x)=f(x)..
Ta áp dụng công thức:
II.Bài tập vận dụng
Bài tập 1: Cho miền D giới hạn bởi đồ thị (C): . Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox.
Bài giải
Ta tìm giao điểm của các đường đã cho:
do
vì
Do đó :
Bài tập 2: Cho miền D giới hạn bởi đồ thị các đường . Tính thể tích khổi tròn xoay được tạo nên khi D xoay quanh trục Oy.
Bài giải
Ta chuyển đổi hàm số:
Ta có: .
Vì đồ thị hai đường giao nhau tại O nên ta có thể tích cần tính là:
=π
=4π (đvtt)
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Giải câu 5 bài: Cộng, trừ và nhân số phức
- Giải câu 2 bài 2: Sự đồng biến, nghịch biến của hàm số
- Dạng 2: Xét dấu các hệ số của hàm bậc ba, phân tích đồ thị hàm số.
- Giải bài 3: Ứng dụng của tích phân trong hình học
- Giải câu 4 bài: Hàm số lũy thừa
- Dạng 1: So sánh các luỹ thừa hay căn số
- Giải bài 4: Đường tiệm cận
- Giải câu 1 bài 1: Sự đồng biến, nghịch biến của hàm số
- Giải câu 6 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Giải câu 1 bài: Ôn tập chương 3
- Giải câu 4 bài: Nguyên hàm
- Dạng 1: Giải bất phương trình mũ và lôgarit bằng phương pháp đặt ẩn phụ