-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải câu 2 bài 2: Cực trị của hàm số
Bài 2: Trang 18 - sgk giải tích 12
Áp dụng quy tắc II, hãy tìm các điểm cực trị của các hàm số sau
a)
;
b)
;
c)
;
d)
.
Bài làm:
a) TXĐ:
.
Ta có
.
![]()
nên x=0 là điểm cực đại: $x_{CĐ}=0$
nên $x= 1$ và $x=-1$ là các điểm cực tiểu.
b) TXĐ:
.
Ta có
$(k in \mathbb{Z})$
![]()
nên $x_{CĐ}=\frac{\pi}{6}+k \pi, k \in \mathbb{Z}$
nên $x_{CT}=-\frac{\pi}{6}+k \pi, k \in \mathbb{Z}$
c) TXĐ ![]()
Ta có
=0 \Leftrightarrow x=\frac{\pi}{4}+k\pi , k \in \mathbb{Z}$.
![]()
Do
nên các điểm cực đại $x_{CĐ}=\frac{\pi}{4}+l2\pi ,l\in \mathbb{Z}$
nên các điểm cực đại $x_{CT}=\frac{\pi}{4}+(2l+1)\pi ,l\in \mathbb{Z}$.
d) TXĐ
.
Ta có ![]()
![]()
nên $x_{CĐ}=-1$
nên $x_{CT}=1$.
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Giải câu 9 bài: Ôn tập chương 4
- Giải câu 2 bài: Ứng dụng của tích phân trong hình học
- Dạng 1: Tính diện tích hình phẳng giới hạn bởi hai đường y=f(x) và y=g(x).
- Giải bài 5: Phương trình mũ. Phương trình Lôgarit
- Giải câu 1 bài: Ứng dụng của tích phân trong hình học
- Tìm điều kiện của tham số để hàm số thoả mãn một điều kiện nào đó về số lượng các điểm cực trị (cực đại, cực tiểu).
- Tìm tất cả những giá trị thực của tham số sao cho hàm số thỏa mãn một điều kiện nào đó về số lượng các điểm cực trị (cực đại, cực tiểu).
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 6)
- Giải câu 5 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Giải câu 9 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Giải câu 8 bài: Ôn tập chương 4
- Giải câu 2 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số