Giải câu 2 bài 4: Hai mặt phẳng song song

1 lượt xem

Câu 2: Trang 71 - SGK hình học 11

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.

a) Chứng minh rằng AM song song với A’M’.

b) Tìm giao điểm của mặt phẳng (A’B’C’) với đường thẳng A’M.

c) Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (BA’C’).

d) Tìm giao điểm G của đường thẳng d với mp(AMA’). Chứng minh G là trọng tâm của tam giác AB’C’.

Bài làm:

Theo giả thiết ta có hình vẽ sau:

a) Ta có MM’, BB’, AA’ song song và bằng nhau nên AA’M’M là hình bình hành, từ đó ta có AM // A’M’.

b) Gọi I = A’M ∩ AM’, ta có :

I ∈ AM' mà AM' lại thuộc mặt phẳng (AB'C')

=>I ∈ (AB'C')

Vậy I = A’M ∩ (AB’C’)

c) Gọi O = AB’ ∩ BA’, ta có :

O ∈ AB' => O ∈ (AB'C') mà O cũng ∈ BA' => O ∈ (BA'C')

=> O ∈(AB'C')∩(BA'C') nên giao tuyến d chính là OC’.

d) Trong mp(AB’C’) : C’O ∩ AM’ = G, ta có:

G ∈ C'O => G ∈ d

G ∈ AM' => G ∈ (AMM')

=> G ∈ d ∩ (AMM')

∆AB’C’ có hai trung tuyến C’O và AM’ cắt nhau tại G nên G là trọng tâm của ∆AB’C’.

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội