Giải câu 6 bài ôn tập chương 4: Giới hạn

Câu 6: trang 142 sgk toán Đại số và giải tích 11

Cho hai hàm số và \(g(x) = {{{x^3} + {x^2} + 1} \over {{x^2}}}\)

a) Tính

b) Hai đường cong sau đây (h.60) là đồ thị của hai hàm số đã cho. Từ kết quả câu a), hãy xác định xem đường cong nào là đồ thị của mỗi hàm số đó.

Hình 60 a

Hình 60 b

Bài làm:

a.

  • Ta có:

  • Ta có:

b) Gọi và \((C_2)\) lần lượt là hai đồ thị của hàm số \(y = f(x)\) và \(y = g(x)\)

nên hai đồ thị và \((C_2)\) có nhánh đi lên khi \(x \rightarrow 0\).

  • nên \((C_1)\) có nhánh tiến gần đến đường thẳng \(y = -1\)khi \( x \rightarrow ∞\). Ta thấy giống đặc điểm của đồ thị b
  • \((C_2)\) có nhánh đi lên khi \(x \rightarrow +∞\). Ta thấy giống đặc điểm của đồ thị a.

Vậy đồ thị hình b là đồ thị của hàm số và hình a là đồ thị của hàm số \(g(x) = {{{x^3} + {x^2} + 1} \over {{x^2}}}\)

Cập nhật: 07/09/2021
Danh mục

Tài liệu hay

Toán Học

Soạn Văn

Tiếng Anh

Vật Lý

Hóa Học

Sinh Học

Lịch Sử

Địa Lý

GDCD

Khoa Học Tự Nhiên

Khoa Học Xã Hội