Giải câu 6 bài 2: Giới hạn của hàm số
Câu 6: trang 133 sgk toán Đại số và giải tích 11
Tính:
\(\eqalign{
& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} - {x^2} + x - 1) \cr
& b)\mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + 3{x^2} - 5) \cr
& c)\mathop {\lim }\limits_{x \to - \infty } (\sqrt {{x^2} - 2x + 5}) \cr
& d)\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 - 2x}} \cr} \)
Bài làm:
a)
Vì (giới hạn đặc biệt của hàm số)
Giá trị nhân sẽ bằng
b)
Vì (giới hạn đặc biệt của hàm số)
Giá trị nhân sẽ bằng $(+)$
c)
d)
Xem thêm bài viết khác
- Giải câu 1 bài 2: Quy tắc tính đạo hàm
- Giải bài 1: Phương pháp quy nạp toán học
- Giải câu 5 bài 2: Dãy số
- Giải câu 4 bài 2: Hoán vị Chỉnh hợp Tổ hợp
- Giải câu 5 bài 2: Quy tắc tính đạo hàm
- Giải câu 1 bài 3: Hàm số liên tục
- Giải câu 1 bài 1: Quy tắc đếm
- Giải câu 9 bài ôn tập chương 4: Giới hạn
- Giải câu 1 bài 2: Giới hạn của hàm số
- Giải câu 3 bài 1: Hàm số lượng giác
- Giải câu 3 bài 1: Phương pháp quy nạp toán học
- Giải bài 2: Quy tắc tính đạo hàm