Giải câu 13 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây sgk Toán Hình 9 tập 1 Trang 106
4 lượt xem
Câu 13: Trang 106 - sgk toán 9 tập 1
Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E nằm bên ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Chứng minh rằng:
a. EH = EK.
b. EA = EC.
Bài làm:
a. Vì :
HA = HB =>
KC = KD =>
Mặt khác: AB = CD => OH = OK ( hai dây bằng nhau thì cách đều tâm )
=>
=> EH = EK ( đpcm )
b) Ta có AH = KC ( một nửa của hai dây bằng nhau )
Mà : EH = EK => EH + HA = EK + KC <=> EA = EC. ( đpcm )
Xem thêm bài viết khác
- Giải câu 4 bài 1: Sự xác định đường tròn.Tính chất đối xứng của đường tròn sgk Toán Hình 9 tập 1 Trang 100
- Giải câu 20 bài: Luyện tập sgk Toán Hình 9 tập 1 Trang 84
- Giải câu 31 bài: Luyện tập sgk Toán Hình 9 tập 1 Trang 89
- Giải câu 21 bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn sgk Toán Hình 9 tập 1 Trang 111
- Giải câu 6 bài 2: Căn thức bậc hai và hằng đẳng thức căn A mũ hai bằng giá trị tuyệt đối của A sgk Toán 9 tập 1 Trang 10
- Giải câu 11 bài: Luyện tập sgk Toán 9 tập 1 Trang 48
- Giải câu 27 bài 5: Hệ số góc của đường thẳng y = ax + b sgk Toán 9 tập 1 Trang 58
- Giải câu 34 bài 7: Vị trí tương đối của hai đường tròn sgk Toán Hình 9 tập 1 Trang 119
- Giải câu 30 bài: Luyện tập sgk Toán hình 9 tập 1 Trang 116
- Giải câu 40 bài: Ôn tập chương I sgk Toán hình 9 tập 1 Trang 95
- Giải câu 35 bài: Ôn tập chương I sgk Toán hình 9 tập 1 Trang 94
- Giải câu 38 bài: Ôn tập chương I sgk Toán hình 9 tập 1 Trang 95