timkiem hải cẩu baikal
- Giải Câu 3 Bài 4: Hai mặt phẳng vuông góc Câu 3; Trang 113 - SGK Hình học 11Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:a) \(\widehat {ABD}\) là góc giữ Xếp hạng: 3
- Giải câu 3 bài 4: Hai mặt phẳng song song Câu 3: Trang 71 - SGK hình học 11Cho hình hộp ABCD.A’B’C’D’.a) chứng minh rằng hai mặt phẳng (BDA’) và (B’D’C) song song với nhau.b) Chứng minh rằng đường chéo AC’ đi qua trọng tâm G1 và Xếp hạng: 3
- Giải câu 3 Bài Hai đường thẳng song song Câu 3: Trang 51 - SGK Toán 4:Trong mỗi hình dưới đây:a) Nêu tên cặp cạnh song song với nhau;b) Nêu tên cặp cạnh vuông góc với nhau. Xếp hạng: 3
- Giải câu 1 bài 4: Hai mặt phẳng song song Câu 1: Trang 71 - SGK hình học 11Trong mặt phẳng (α) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên (α). Trên a, b và c lần lượt Xếp hạng: 3
- Giải Câu 1 Bài 4: Hai mặt phẳng vuông góc Câu 1: Trang 113 - SGK Hình học 11Cho ba mặt phẳng $(\alpha ),(\beta ),(\gamma )$ những mệnh đề nào sau đây đúng?a) Nếu (α) ⊥ (β) và (α) // () thì (β) ⊥ $(\gamma )$b) Nếu (α) ⊥ (β) và (α) ⊥ $(\gamma Xếp hạng: 3
- Giải câu 2 Bài Hai đường thẳng song song Câu 2: Trang 51 - SGK Toán 4:Trong hình bên, cho biết các hình tứ giác ABEG, ACDG, BCDE đều là hình chữ nhật. Cạnh BE song song với những cạnh nào? Xếp hạng: 3
- Giải câu 2 bài 4: Hai mặt phẳng song song Câu 2: Trang 71 - SGK hình học 11Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M và M’ lần lượt là trung điểm của các cạnh BC và B’C’.a) Chứng minh rằng AM song song với A’M’.b) Tìm giao điể Xếp hạng: 3
- Giải Câu 1 Bài 2: Hai đường thẳng vuông góc Câu 1: Trang 97 - SGK Hình học 11Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa các cặp vectơ sau đây:a) \(\overrightarrow{AB}\) và \(\overrightarrow{EG};\) Xếp hạng: 3
- Giải Câu 3 Bài 2: Hai đường thẳng vuông góc Câu 3: Trang 97 - SGK Hình học 11a) Trong không gian nếu hai đường thẳng a và b cùng vuông góc với đường thẳng c thì a và b có song song với nhau không?b) Trong không gian nếu đường thẳng a vuông gó Xếp hạng: 3
- Giải Câu 4 Bài 2: Hai đường thẳng vuông góc Câu 4: Trang 98 - SGK Hình học 11Trong không gian cho hai tam giác đều \(ABC\) và \(ABC'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau. Gọi \(M, N, P, Q\) lần lượt là trung điểm của các cạn Xếp hạng: 3
- Giải Câu 5 Bài 2: Hai đường thẳng vuông góc Câu 5: Trang 98 - SGK Hình học 11Cho hình chóp tam giác \(S.ABC\) có \(SA = SB = SC\) và có \(\widehat{ABC}= \widehat{BSC}=\widehat{CSA}.\) Chứng minh rằng \(SA ⊥ BC, SB ⊥ AC, SC ⊥ AB\). Xếp hạng: 3
- Giải Câu 6 Bài 2: Hai đường thẳng vuông góc Câu 6: Trang 98 - SGK Hình học 11Trong không gian cho hai hình vuông \(ABCD\) và \(ABC'D'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm \(O\) và \(O'\). Chứng minh rằng \(AB  Xếp hạng: 3
- Giải Câu 7 Bài 2: Hai đường thẳng vuông góc Câu 7: Trang 98 - SGK Hình học 11Cho \(S\) là diện tích tam giác \(ABC\). Chứng minh rằng: \(S=\frac{1}{2}\sqrt{\overrightarrow{AB}^{2}.\overrightarrow{AC}^{2}-(\overrightarrow{AB}.\overrightarrow{AC})^{2}}.\) Xếp hạng: 3
- Giải Câu 4 Bài 4: Hai mặt phẳng vuông góc Câu 4: Trang 114 - SGK Hình học 11Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ m Xếp hạng: 3
- Giải Câu 5 Bài 4: Hai mặt phẳng vuông góc Câu 5: Trang 114 - SGK Hình học 11Cho hình lập phương \(ABCD.A'B'C'D'\). Chứng minh rằng:a) Mặt phẳng \((AB'C'D)\) vuông góc với mặt phẳng \((BCD'A')\);b) Đường thẳng \(AC'\) vuông góc với mặt phẳng \( Xếp hạng: 3
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc Câu 6: Trang 114 - SGK Hình học 11Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi cạnh \(a\) và có \(SA = SB = SC = a\). Chứng minh rằng:a) Mặt phẳng \((ABCD)\) vuông góc với mặt phẳng \((SBD)\);b) Xếp hạng: 3
- Giải Câu 7 Bài 4: Hai mặt phẳng vuông góc Câu 7: Trang 114 - SGK Hình học 11Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a, BC = b, CC' = c\).a) Chứng minh rằng mặt phẳng \((ADC'B')\) vuông góc với mặt phẳng \((ABB'A')\).b) Tính độ dài đườn Xếp hạng: 3
- Giải Câu 8 Bài 4: Hai mặt phẳng vuông góc Câu 8: Trang 114 - SGK Hình học 11Tính độ dài đường chéo của một hình lập phương cạnh \(a\). Xếp hạng: 3
- Giải Câu 9 Bài 4: Hai mặt phẳng vuông góc Câu 9: Trang 114 - SGK Hình học 11Cho hình chóp tam giác đều \(S.ABC \) có \(SH\) là đường cao. Chứng minh \(SA ⊥ BC\) và \(SB ⊥ AC\) Xếp hạng: 3