photos image 2010 10 08 vutru 2
- Giải bài 10: Làm tròn số sgk Toán 7 tập 1 Trang 35 39 Làm tròn số như thế nào, để làm gì ? Để biết chi tiết hơn, KhoaHoc xin chia sẻ với các bạn bài 10: Làm tròn số. Với lý thuyết và các bài tập có lời giải chi tiết, hi vọng rằng đây sẽ là tài liệu giúp các bạn học tập tốt hơn. Xếp hạng: 3
- Giải câu 12 bài Ôn tập chương 6 sgk Đại số 10 trang 157 Câu 12: trang 157 sgk Đại số 10Chọn phương án đúngGiá trị của biểu thức \(A = {{2{{\cos }^2}{\pi \over 8} - 1} \over {1 + 8{{\sin }^2}{\pi \over 8}{{\cos }^2}{\pi \over 8}}}\) là:(A) \({{ - \sqr Xếp hạng: 3
- Giải câu 3 bài Ôn tập chương 6 sgk Đại số 10 trang 155 Câu 3: trang 155 sgk Đại số 10Tính:a) \(sin\,α,\)nếu \(cos\, \alpha = {{ - \sqrt 2 } \over 3};{\pi \over 2} < \alpha < \pi \)b) \(\cosα\),nếu \(\tan \alpha = 2\sqrt 2 ,\pi < \alpha & Xếp hạng: 3
- Giải câu 9 bài Ôn tập chương 6 sgk Đại số 10 trang 157 Câu 9: trang 157 sgk Đại số 10Chọn phương án đúngGiá trị \(\sin {{47\pi } \over 6}\) là:(A) \({{\sqrt 3 } \over 2}\)(B) \({1 \over 2}\)(C) \({{\sqrt 2 } \over 2}\)(D) \({{ - 1} \over 2}\) Xếp hạng: 3
- Giải câu 11 bài Ôn tập chương 6 sgk Đại số 10 trang 157 Câu 11: trang 157 sgk Đại số 10Chọn phương án đúngCho \(\alpha = {{5\pi } \over 6}\).Giá trị của biểu thức \(cos3\alpha + 2cos(\pi - 3\alpha ){\sin ^2}({\pi \over 4} - 1,5\alpha )\)là:(A) \({1 Xếp hạng: 3
- Giải câu 13 bài Ôn tập chương 6 sgk Đại số 10 trang 157 Câu 13: trang 157 sgk Đại số 10Chọn phương án đúngCho \(\cot \alpha = {1 \over 2}\) .Tính giá trị của biểu thức \(B = {{4\sin \alpha + 5\cos \alpha } \over {2\sin \alpha - 3\cos \alpha }}\) là: Xếp hạng: 3
- Giải câu 14 bài Ôn tập chương 6 sgk Đại số 10 trang 157 Câu 14: trang 157 sgk Đại số 10Chọn phương án đúngCho \(\tan a = 2\).Giá trị của biểu thức \(C = {{\sin a} \over {{{\sin }^3}a + 2{{\cos }^3}a}}\)là:(A) \({5 \over {12}}\)(B) 1(C) \({{ - 8} \over {11}}\)(D) \({{ - 10} Xếp hạng: 3
- Giải câu 1 bài Ôn tập cuối năm sgk Đại số 10 trang 159 Câu 1: trang 159 sgk Đại số 10Hãy phát biểu các khẳng định sau đây dưới dạng điều kiện cần và đủ.Tam giác \(ABC\)vuông tại \(A\)thì \(BC^2= AB^2+AC^2\)Tam giác \(ABC\)có các cách cạnh thỏa mãn Xếp hạng: 3
- Giải câu 3 bài Ôn tập cuối năm sgk Đại số 10 trang 159 Câu 3: trang 159 sgk Đại số 10Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:\(f(x) = {{(3x - 2)(5 - x)} \over {(2 - 7x)}} \ge 0\) Xếp hạng: 3
- Giải câu 6 bài Ôn tập chương 6 sgk Đại số 10 trang 156 Câu 6: trang 156 sgk Đại số 10Không sử dụng máy tính, hãy chứng minh:a) \(\sin {75^0} + \cos {75^0} = {{\sqrt 6 } \over 2}\)b) \(\tan {267^0} + \tan {93^0} = 0\)c) \(\sin {65^0} + \sin {55^0} = \sqrt 3 \cos {5^0}\)d) \(\cos Xếp hạng: 3
- Giải câu 8 bài Ôn tập chương 6 sgk Đại số 10 trang 156 Câu 8: trang 156 sgk Đại số 10Chứng minh các biểu thức sau không phụ thuộc vào \(x\)a) \(A = \sin ({\pi \over 4} + x) - \cos ({\pi \over 4} - x)\)b) \(B = \cos ({\pi \over 6} - x) - \sin ({\pi \ove Xếp hạng: 3
- Giải câu 5 bài Ôn tập cuối năm sgk Đại số 10 trang 159 Câu 5: trang 159 sgk Đại số 10Nêu các tính chất của bất đẳng thức.Áp dụng một trong các tính chất đó, hãy so sánh các số \({2^{3000}}\) và \({3^{2000}}\). Xếp hạng: 3
- Giải câu 1 bài Ôn tập chương 6 sgk Đại số 10 trang 155 Câu 1: trang 155 sgk Đại số 10Hãy nêu định nghĩa của \(sin\,\alpha, cos\,\alpha \)và giải thích vì sao ta có:\(\sin(α+k2π) = \sin α; k ∈\mathbb Z\)\(\cos(α+k2π) = \cos α; k ∈\mathbb Z\) Xếp hạng: 3
- Giải câu 4 bài Ôn tập chương 6 sgk Đại số 10 trang 155 Câu 4: trang 155 sgk Đại số 10Rút gọn biểu thứca) \({{2\sin 2\alpha - \sin 4\alpha } \over {2\sin 2\alpha + \sin 4\alpha }}\)b) \(\tan \alpha ({{1 + {{\cos }^2}\alpha } \over {\sin \alpha }} - \sin \alpha )\)c) \({{ Xếp hạng: 3
- Giải câu 5 bài Ôn tập chương 6 sgk Đại số 10 trang 156 Câu 5: trang 156 sgk Đại số 10Không sử dụng máy tính, hãy tính:a) \(\cos {{22\pi } \over 3}\)b) \(\sin {{23\pi } \over 4}\)c) \(\sin {{25\pi } \over 3} - \tan {{10\pi } \over 3}\)d) \({\cos ^2}{\pi \over 8} - {\sin ^2}{ Xếp hạng: 3
- Giải câu 7 bài Ôn tập chương 6 sgk Đại số 10 trang 156 Câu 7: trang 156 sgk Đại số 10Chứng minh các đồng nhất thứca. \(\frac{1-cos\,x+cos\,2x}{sin\,2x-sin\,x}=cot\,x\)b. \(\frac{sin\,x+sin\,\frac{x}{2}}{1+cos\,x+cos\,\frac{x}{2}}=tan\,\frac{x}{2}\)c. \(\frac{2cos\,2x-sin\,4x}{2c Xếp hạng: 3
- Giải câu 4 bài Ôn tập cuối năm sgk Đại số 10 trang 159 Câu 4: trang 159 sgk Đại số 10Phát biểu định lí về dấu của một tam thức bậc hai \(f(x) = ax^2+ bx + c\).Áp dụng quy tắc đó, hãy xác định giá trị của \(m\)để tam thức sau luôn luôn âm:& Xếp hạng: 3
- Giải câu 7 bài Ôn tập cuối năm sgk Đại số 10 trang 159 Câu 7: trang 159 sgk Đại số 10Nêu các công thức biến đổi lượng giác đã học. Xếp hạng: 3
- Giải câu 8 bài Ôn tập cuối năm sgk Đại số 10 trang 159 Câu 8: trang 159 sgk Đại số 10Nêu cách giải hệ hai bất phương trình bậc nhất hai ẩn và giải hệ\(\left\{ \matrix{2x + y \ge 1 \hfill \cr x - 3y \le 1 \hfill \cr} \right.\) Xếp hạng: 3