timkiem phát hiện cây bị hạn
- Xác định nghĩa của yếu tố Hán Việt: tuyệt, đồng Câu 2 (Trang 101 SGK) Xác định nghĩa của yếu tố Hán Việta. Từ tuyệt (Hán Việt) có những nghĩa thông dụng nhất như sau:dứt, không còn gì;cực kì, nhất.Cho biết nghĩa và giải thích ngh Xếp hạng: 3
- 1. Rễ cây B. Hoạt động hình thành kiến thức1. Rễ câya, Các loại rễQuan sát hình 11.1, mô tả sự khác nhau của 2 loại rễ cây A, B. Gọi tên 2 loại rễ đó. Xếp hạng: 3
- Giải câu 3 bài ôn tập chương 4: Giới hạn Câu 3: trang 141 sgk toán Đại số và giải tích 11Tên của một học sinh được mã hóa bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức \(A, H, N, O\) vớ Xếp hạng: 3
- Giải câu 5 bài ôn tập chương 4: Giới hạn Câu 5: trang 142 sgk toán Đại số và giải tích 11Tính các giới hạn saua. \(\mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}}\)b. \(\mathop {\lim }\limits_{x \to - 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}} Xếp hạng: 3
- Giải câu 2 bài 1: Giới hạn của dãy số Câu 2: trang 121 sgk toán Đại số và giải tích 11Biết dãy số \((u_n)\) thỏa mãn \(|u_n-1| < \frac{1}{n^{3}}\) với mọi n. Chứng minh rằng \(\lim u_n=1\). Xếp hạng: 3
- Giải câu 3 bài 1: Giới hạn của dãy số Câu 3: trang 121 sgk toán Đại số và giải tích 11Tìm giới hạn sau:a) \(\lim \frac{6n - 1}{3n +2}\)b) \(\lim \frac{3n^{2}+n-5}{2n^{2}+1}\)c) \(\lim \frac{3^{n}+5.4^{n}}{4^{n}+2^{n}}\)d) \(\lim\frac{\sqrt{9n^{2}-n+1}}{4n -2}\) Xếp hạng: 3
- Giải câu 1 bài ôn tập chương 4: Giới hạn Câu 1: trang 141 sgk toán Đại số và giải tích 11Hãy lập bảng liệt kê các giới hạn đặc biệt của dãy số và các giới hạn đặc biệt của hàm số Xếp hạng: 3
- Giải câu 2 bài ôn tập chương 4: Giới hạn Câu 2: trang 141 sgk toán Đại số và giải tích 11Cho hai dãy số \((u_n)\) và \((v_n)\). Biết \(|u_n– 2| ≤ v_n\) với mọi \(n\) và \(\lim v_n=0\).Có kết luận gì về giới hạn của dãy số \((u_n)\)? Xếp hạng: 3
- Giải câu 10 bài ôn tập chương 4: Giới hạn Câu 10: trang 143 sgk toán Đại số và giải tích 11Cho dãy số \((u_n)\) với \({u_n} = {{1 + 2 + 3 + ... + n} \over {{n^2} + 1}}\)Mệnh đề nào sau đây là đúng?A. \(\lim u_n= 0\)B. \({{\mathop{\rm limu}\nolimits} _n} = Xếp hạng: 3
- Giải câu 11 bài ôn tập chương 4: Giới hạn Câu 11: trang 143 sgk toán Đại số và giải tích 11Cho dãy số \((u_n)\) với : \(u_n = \sqrt 2 + (\sqrt2)^2+......+( \sqrt 2)^n\)Chọn mệnh đề đúng trong các mệnh đề sau:A. \(\lim {u_n} = \sqrt 2 + {(\s Xếp hạng: 3
- Giải câu 4 bài ôn tập chương 4: Giới hạn Câu 4: trang 142 sgk toán Đại số và giải tích 11a) Có nhận xét gì về công bội của các cấp số nhân lùi vô hạn.b) Cho ví dụ về cấp số nhân lùi vô hạn có công bội là số âm và một cấp Xếp hạng: 3
- Giải câu 6 bài ôn tập chương 4: Giới hạn Câu 6: trang 142 sgk toán Đại số và giải tích 11Cho hai hàm số \(f(x) = {{1 - {x^2}} \over {{x^2}}}\) và \(g(x) = {{{x^3} + {x^2} + 1} \over {{x^2}}}\)a) Tính \(\mathop {\lim }\limits_{x \to 0} f(x);\mathop {\lim }\limits_{x Xếp hạng: 3
- Giải câu 7 bài ôn tập chương 4: Giới hạn Câu 7: trang 143 sgk toán Đại số và giải tích 11Xét tính liên tục trên R của hàm số:\(g(x) = \left\{ \matrix{{{{x^2} - x - 2} \over {x - 2}}(x > 2) \hfill \cr 5 - x(x \le 2) \hfill \cr} \right.\) Xếp hạng: 3
- Giải câu 8 bài ôn tập chương 4: Giới hạn Câu 8: trang 143 sgk toán Đại số và giải tích 11Chứng minh rằng phương trình \(x^5– 3x^4+ 5x – 2 = 0\) có ít nhất ba nghiệm nằm trong khoảng \((-2, 5)\) Xếp hạng: 3
- Giải câu 9 bài ôn tập chương 4: Giới hạn Câu 9: trang 143 sgk toán Đại số và giải tích 11Mệnh đề nào sau đây là mệnh đề đúng?A. Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn luôn giảmB. Nếu \((u_n)\) là dãy số tăng thì \ Xếp hạng: 3
- Giải câu 12 bài ôn tập chương 4: Giới hạn Câu 12: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúng\(\mathop {\lim }\limits_{x \to {1^ - }} {{ - 3x - 1} \over {x - 1}}\) bằng:A. \(-1\) B. \(-∞\)C. \(-3\)D. \(+∞\) Xếp hạng: 3
- Giải câu 13 bài ôn tập chương 4: Giới hạn Câu 13: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúng:Cho hàm số: \(f(x) = {{1 - {x^2}} \over x}\) bằng:A. \(+∞\)B. \(1\)C. \(-∞\)D. \(-1\) Xếp hạng: 3
- Giải câu 14 bài ôn tập chương 4: Giới hạn Câu 14: trang 144 sgk toán Đại số và giải tích 11Chọn đáp án đúngCho hàm số: \(f(x) = \left\{ \matrix{{{3 - x} \over {\sqrt {x + 1} - 2}};\text{ nếu } x \ne 3 \hfill \cr m;\text{ nếu }x = 3 \hf Xếp hạng: 3
- Giải câu 15 bài ôn tập chương 4: Giới hạn Câu 15: trang 144 sgk toán Đại số và giải tích 11Cho phương trình: \(-4x^3+ 4x – 1 = 0\)Mệnh đề sai là:A. Hàm số \(f(x) = -4x^3+ 4x – 1\) liên tục trên \(\mathbb R\)B. Phương trình (1) không có nghiệm t Xếp hạng: 3