khampha vu tru 48486 qua cau lua cua sao kepler
- Lập sơ đồ về kết cấu của bài văn bia Câu 4: trang 32 sgk Ngữ văn 9 tập 2Lập sơ đồ về kết cấu của bài văn bia
- Giải câu 2 bài 2: Cực trị của hàm số Bài 2: Trang 18 - sgk giải tích 12Áp dụng quy tắc II, hãy tìm các điểm cực trị của các hàm số saua) $y=x^{4}-2x^{2}+1$;b) $y=\sin 2x-x$;c) $y=\sin x +\cos x$;d) $y=x^{5}-x^{3}-2x+1$.
- Giải câu 4 bài 2: Cực trị của hàm số Bài 4: Trang 18 - sgk giải tích 12Chứng minh rằng với mọi giá trị của tham số m, hàm số $y=x^{3}-mx^{2}-2x+1$ luôn luôn có một điểm cực đại và một điểm cực tiểu.
- Giải câu 1 bài 2: Cực trị của hàm số Bài 1: Trang 18 - sgk giải tích 12Áp dụng Quy tắc I, hãy tìm các điểm cực trị của các hàm số saua) $y=2x^{3}+3x^{2}-36x-10$.b) $y=x^{4}+2x^{2}-3$.c) $y=x+\frac{1}{x}$.d) $y=x^{3}(1-x^{2})$.e) $y=\sqrt{x^{2}-x+1}$
- Giải câu 5 bài 2: Cực trị của hàm số Bài 5: Trang 18 - sgk giải tích 12Tìm a và b để các cực trị của hàm số $$y=\frac{5}{3}a^{2}x^{3}+2ax^{2}-9x+b$$ đều là những số dương và $x_{0}=-\frac{5}{9}$ là điểm cực đại.
- Giải câu 4 bài 5: Xác suất của biến cố Câu 4: Trang 74 - sgk đại số và giải tíchGieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt b chấm. Xét phương trình x2 + bx + 2 = 0. Tính xác suất sao cho:a
- Giải câu 1 bài 2: Giới hạn của hàm số Câu 1: trang 132 sgk toán Đại số và giải tích 11Dùng định nghĩa tìm các giới hạn sau:a) \(\underset{x\rightarrow 4}{lim}\frac{x+1}{3x - 2}\);b) \(\underset{x \rightarrow +\infty }{lim}\frac{2-5x^{2}}{x^{2}+3}
- Giải câu 2 bài 2: Giới hạn của hàm số Câu 2: trang 132 sgk toán Đại số và giải tích 11Cho hàm số\(f(x) = \left\{ \matrix{\sqrt x + 1 \text{ nếu }x\ge 0 \hfill \cr 2x\text{ nếu }x < 0 \hfill \cr} \right.\)Và các dãy số \((u_n)\) với
- Giải câu 6 bài 2: Cực trị của hàm số Bài 6: Trang 18 - sgk giải tích 12Xác định giá trị của tham số m để hàm số $y=\frac{x^{2}+mx+1}{x+m}$ đạt cực đại tại $x=2$.
- Giải câu 1 bài 5: Xác suất của biến cố Câu 1: Trang 74 - sgk đại số và giải tíchGieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần.a) Hãy mô tả không gian mẫu.b) Xác định các biến cố sau:A: "Tổng số chấm xuất hiện
- Giải câu 3 bài 5: Xác suất của biến cố Câu 3: Trang 74 - sgk đại số và giải tíchMột người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau.Tính xác suất để hai chiếc chọn được tạo thành một đôi.
- Giải câu 3 bài 2: Giới hạn của hàm số Câu 3: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow -3}{lim}\) \(\frac{x^{2 }-1}{x+1}\);b) \(\underset{x\rightarrow -2}{lim}\) \(\frac{4-x^{2}}{x + 2}\);c)&n
- Giải câu 3 bài 2: Cực trị của hàm số Bài 3: Trang 18 - sgk giải tích 12Chứng minh rằng hàm số $y=\sqrt{|x|}$ không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó.
- Hãy cho biết hàm ý của những câu dưới đây Câu 2: trang 75 sgk Ngữ văn 9 tập 1Hãy cho biết hàm ý của những câu dưới đây:Đây, tôi giới thiệu với anh một hoạ sĩ lão thành nhé. Và đây là cô kĩ sư nông nghiệp. Anh đưa khách về nhà đ
- Giải câu 2 bài 5: Xác suất của biến cố Câu 2: Trang 74 - sgk đại số và giải tíchCó bốn tấm bìa được đánh số từ 1 đến 4. Rút ngẫu nhiên ba tấm.a) Hãy mô tả không gian mẫu.b) Xác định các biến cố sau:A: "Tổng các số trê
- Giải câu 4 bài 1: Giới hạn của dãy số Câu 4: trang 122 sgk toán Đại số và giải tích 11Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng \(1\). Nó tô màu xám các hình vuông n
- Giải câu 7 bài 1: Giới hạn của dãy số Câu 7: trang 122 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\lim({n^3} + 2{n^2}-n + 1)\);b) \(\lim( - {n^2} + 5n-2)\);c) \(\lim (\sqrt{n^{2}-n}- n)\);d) \(\lim (\sqrt{n^{2}-n} + n)\).
- Giải câu 8 bài 1: Giới hạn của dãy số Câu 8: trang 122 sgk toán Đại số và giải tích 11Cho hai dãy số \((u_n)\) và \((v_n)\). Biết \(\lim u_n= 3; \lim v_n= +\infty \).Tính các giới hạn:a) \(\lim \frac{3u_{n}-1}{u_{n}+ 1};\)b) \(\lim \frac{v_{n}+ 2}{v^
- Câu 4: Nêu những ứng dụng thực tế của clo? Câu 4 : Trang 101 sgk hóa 10Nêu những ứng dụng thực tế của clo?
- Giải câu 2 bài 1: Giới hạn của dãy số Câu 2: trang 121 sgk toán Đại số và giải tích 11Biết dãy số \((u_n)\) thỏa mãn \(|u_n-1| < \frac{1}{n^{3}}\) với mọi n. Chứng minh rằng \(\lim u_n=1\).
- Giải câu 3 bài 1: Giới hạn của dãy số Câu 3: trang 121 sgk toán Đại số và giải tích 11Tìm giới hạn sau:a) \(\lim \frac{6n - 1}{3n +2}\)b) \(\lim \frac{3n^{2}+n-5}{2n^{2}+1}\)c) \(\lim \frac{3^{n}+5.4^{n}}{4^{n}+2^{n}}\)d) \(\lim\frac{\sqrt{9n^{2}-n+1}}{4n -2}\)
- Giải câu 5 bài 1: Giới hạn của dãy số Câu 5: trang 122 sgk toán Đại số và giải tích 11Tính tổng \(S = -1 + \frac{1}{10}- \frac{1}{10^{2}} + ... + \frac{(-1)^{n}}{10^{n-1}}+ ...\)
- Giải câu 6 bài 1: Giới hạn của dãy số Câu 6: trang 122 sgk toán Đại số và giải tích 11Cho số thập phân vô hạn tuần hoàn a = 1, 020 020 ... (chu kì là 02). Hãy viết a dưới dạng một phân số.
- Giải câu 4 bài 2: Giới hạn của hàm số Câu 4: trang 132 sgk toán Đại số và giải tích 11Tính các giới hạn sau:a) \(\underset{x\rightarrow 2}{lim}\) \(\frac{3x -5}{(x-2)^{2}}\);b) \(\underset{x\rightarrow 1^{-}}{lim}\) \(\frac{2x -7}{x-1}\);c)&