Giải câu 1 đề 9 ôn thi toán lớp 9 lên 10
ĐỀ THI
Bài 1: (2,0 điểm)
Cho hai biểu thức:
và $B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}$ với $x\geq 0,x\neq 1$
1. Tính giá trị của biểu thức A khi ![]()
2. Chứng minh ![]()
3. Tìm tất cả giá trị của
để $\frac{A}{B}\geq \frac{x}{4}+5$
Bài làm:
1. Thay
thỏa mãn điều kiện xác định vào biểu thức A ta có:
![]()
Vậy khi
thì $A=\frac{7}{2}$
2. ![]()
![]()
![]()
Với ![]()
Suy ra điều phải chứng minh.
3. ![]()
![]()
![]()
Mà
với mọi $x$ thỏa mãn điều kiện xác định.
![]()
So với điều kiện, thỏa mãn:
Vậy
thì $\frac{A}{B}\geq \frac{x}{4}+5$
Xem thêm bài viết khác
- Giải câu 2 đề 8 ôn thi toán lớp 9 lên 10
- Đáp án đề thi vào lớp 10 môn Toán Kon Tum năm 2022 Đề thi môn Toán vào lớp 10 Kon Tum năm 2022
- Đề thi vào 10 môn Toán trường THPT chuyên Lam Sơn, Thanh Hóa năm 2022 Đề thi vào 10 môn Toán 2022
- Đề thi thử vào 10 môn Toán thành phố Hà Nội năm 2022 - Đề 21 Đề thi thử vào 10 môn Toán 2022
- Đề thi thử Toán vào 10 quận Ba Đình - Hà Nội năm 2022 Đề thi thử vào lớp 10 môn Toán 2022
- Lời giải bài 1 chuyên đề Rút gọn phân thức đại số
- Đề thi thử Toán vào 10 năm 2022 Đề thi thử Toán vào lớp 10
- Đề thi thử Toán vào lớp 10 THPT chuyên tỉnh Thái Nguyên 2022 Đề thi thử Toán vào 10 chuyên Thái Nguyên (Đề đại trà)
- Giải câu 1 đề 11 ôn thi toán lớp 9 lên 10
- Đề thi thử Toán vào 10 tỉnh Thanh Hóa năm 2022 Đề thi thử Toán vào lớp 10 năm 2022
- Giải câu 2 đề 19 ôn thi toán lớp 9 lên 10
- Đáp án đề thi vào lớp 10 môn Toán Tuyên Quang năm 2022 Đề thi môn Toán vào lớp 10 Tuyên Quang năm 2022