[Chân trời sáng tạo] Giải SBT toán 6 tập 1 bài 13: Bội chung. Bội chung nhỏ nhất

  • 1 Đánh giá

Giải SBT toán 6 tập 1 bài 13: Bội chung. Bội chung nhỏ nhất sách "chân trời sáng tạo". KhoaHoc sẽ hướng dẫn giải tất cả câu hỏi và bài tập với cách giải nhanh và dễ hiểu nhất. Hi vọng, thông qua đó học sinh được củng cố kiến thức và nắm bài học tốt hơn.

Bài 1. Tìm:

a) BC(6; 10)

b) BC(9, 12)

Lời giải

a) BC(6; 10)

B(6) = {0; 6; 12; 18; 24; 30; 36; 42; 48; 54; 60; 66; ...}

B(10) = {0; 10; 20; 30; 40; 50; 60; 70; ...}

Do đó BC(6, 10) = {0; 30; 60; ...}

b) BC(9, 12) = {0; 36; 72; 108; ...}

Bài 2. Tìm BCNN của:

a) 1 và 8;

b) 8; 1 và 12

c) 36 và 72

d) 5 và 24

Lời giải

a) 1 và 8

Ta có: 1 = 1; 8 = nên BCNN(1, 8) = 1. = 8

b) 8; 1 và 12

BCNN(8, 1, 12) = 24

c) 36 và 72

BCNN(36; 72) = 72

d) 5 và 24

BCNN(5, 24) = 120

Bài 3. Tìm BCNN của:

a) 17 và 27

b) 45 và 48

c) 60 và 150

d) 10; 12 và 15

Lời giải

a) 17 và 27

Ta có: 17 = 17; 27= nên BCNN(17, 27) = 17. = 459

b) 45 và 48

BCNN(45, 48) = 720

c) 60 và 150

BCNN(60, 150) = 300

d) 10; 12 và 15

BCNN(10, 12, 15) = 60

Bài 4. Hãy tính nhẩm BCNN của các số sau bằng cách nhân số lớn nhất lần lượt với 1; 2; 3; ... cho đến khi được kết quả là một số chia hết cho các số còn lại:

a) 30 và 150

b) 40; 28 và 140

c) 100; 120 và 200

Lời giải

a) BCNN(30, 150) = 150

b) BCNN(40, 28, 140) = 280

c) BCNN(100; 120; 200) = 600

Bài 5. Tìm các bội chung nhỏ hơn 500 của 30 và 45

Lời giải

Ta có BCNN(30, 45) = 90

Do đó BC(30, 45) = B(90) = {0; 90; 180; 270; 360; 450; 540; ...}

Vậy tập hợp các bội chung nhỏ hơn 500 của 30 và 45 là {0; 90; 180; 270; 360; 450; ...}

Bài 6. Quy đồng mẫu các phân số (có sử dụng bội chung nhỏ nhất)

a)

b)

Lời giải

a) Ta có: BCNN(44, 18, 36) = 396

Ta quy đồng mẫu các phân số:

; $\frac{11}{18}=\frac{242}{396}$; $\frac{5}{36}=\frac{55}{396}$

b) Có:

Ta có: BCNN(16, 24, 8) = 48

Ta quy đồng mẫu các phân số:

; $\frac{5}{24}=\frac{10}{48}$; $\frac{3}{8}=\frac{18}{48}$

Bài 7. Thực hiện các phép tính (có sử dụng bội chung nhỏ nhất)

a)

b)

c)

d)

Lời giải

a)

b)

c)

d)

Bài 8. Số học sinh khối 6 của trường Kết Đoàn khoảng từ 300 đến 400 học sinh. Mỗi lần xếp hàng 12, hàng 15, hàng 18 đều vừa đủ. Hỏi khối 6 của trường Kết đoàn có bao nhiêu học sinh?

Lời giải

Số học sinh khối 6 của trường Kết Đoàn là một bội chung trong khoảng từ 300 đến 400 của 12; 15 và 18.

Có BCNN(12; 15; 18) = 180

Nên BC(12; 15; 18) = B(180) = {0; 180; 360; 540; ...}

Vậy khối 6 của trường Kết Đoàn có 360 học sinh.


  • 14 lượt xem
Cập nhật: 07/09/2021