-
Tất cả
- Tài liệu hay
- Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
- Tiếng Anh
- Vật Lý
- Hóa Học
- Sinh Học
- Lịch Sử
- Địa Lý
- GDCD
- Khoa Học Tự Nhiên
- Khoa Học Xã Hội
Giải câu 5 đề 13 ôn thi toán 9 lên 10
Bài 5: (1,0 điểm)
Cho các số a, b, c thỏa mãn điều kiện 0 < a < b và phương trình vô nghiệm. Chứng minh rằng:
Bài làm:
Vì phương trình vô nghiệm nên $b^{2} – 4ac < 0$
<=> <=> $c > \frac{b^{2}}{4a}$ => c > 0 (vì 0 < a < b)
<=> $a + b + c > 3b - 3a$ (Do 0 < a < b)
<=> <=> $4ac - 2bc + c^{2} > 0$ (Vì c > 0)
<=> <=> $(b - c)^{2} + 4ac - b^{2} > 0$
Bất đẳng thức trên đúng.
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Đề ôn thi môn toán lớp 9 lên 10 (đề 17)
- Đáp án đề thi vào lớp 10 môn Toán Sóc Trăng năm 2022 Đề thi môn Toán vào lớp 10 Sóc Trăng năm 2022
- Đáp án đề thi vào lớp 10 môn Toán Kiên Giang năm 2022 Đề thi môn Toán vào lớp 10 Kiên Giang năm 2022
- Đề thi thử vào 10 môn Toán thành phố Hà Nội năm 2022 - Đề 20 Đề thi thử vào 10 môn Toán 2022
- Lời giải bài 3 chuyên đề Phương pháp đại số trong bài toán diện tích đa giác
- Đáp án đề thi vào lớp 10 môn Toán Đắk Nông năm 2022 Đề thi môn Toán vào lớp 10 tỉnh Đắk Nông năm 2022
- Đề thi thử vào lớp 10 môn Toán phòng GD Thạch Thành năm 2022 Đề thi thử vào lớp 10 môn Toán 2022
- Ôn thi lên lớp 10 môn Toán Chuyên đề Rút gọn phân thức đại số
- Đáp án đề thi vào lớp 10 môn Toán Cao Bằng năm 2022 Đề thi môn Toán lớp 10 tỉnh Cao Bằng năm 2022
- Đề thi thử Toán vào 10 tỉnh Thái Nguyên năm 2022 Đề thi thử vào lớp 10 môn Toán 2022
- Đề thi tuyển sinh lớp 10 chuyên Toán Bình Định năm 2022 Đề thi vào 10 chuyên Toán Bình Định năm 2022
- Giải câu 4 đề 3 ôn thi toán lớp 9 lên 10