-
Tất cả
- Tài liệu hay
- Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
- Tiếng Anh
- Vật Lý
- Hóa Học
- Sinh Học
- Lịch Sử
- Địa Lý
- GDCD
- Khoa Học Tự Nhiên
- Khoa Học Xã Hội
Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên TP HCM
Bài làm:
Lời giải bài 5 :
Đề bài :
Giải phương trình :
Hướng dẫn giải chi tiết :
(1)
ĐK :
Đặt ( $y\geq 0$ ) => $x=y^{2}-1$
(1) <=> (*)
+ Nếu y = 0 , (1) vô nghiệm .
+ Nếu , (*) <=> $(\frac{x}{y})^{3}+3(\frac{x}{y})^{2}-4=0$
<=> Hoặc x = y hoặc x = - 2y
+ Với x = y =>
<=> Hoặc (loại) hoặc $y=\frac{1+\sqrt{5}}{2}=> x=\frac{1+\sqrt{5}}{2}$
+ Với x = -2y =>
<=> Hoặc (loại) hoặc $y=-1+\sqrt{2}=>x=2-2\sqrt{2}$
Vậy phương trình đã cho có 2 nghiệm { ; $2-2\sqrt{2}$ }
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Nguyễn Huệ
- Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Câu 6 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Lê Qúy Đôn
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường THPT chuyên Vinh
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 2 Đề thi thử trường THPT chuyên Đà Nẵng