Giải câu 3 đề 2 ôn thi toán lớp 9 lên 10
Bài 3:
Cho phương trình :
( x là ẩn số ) (1)
a. Chứng minh (1) luôn có hai nghiệm phân biệt với mọi giá trị m .
b. Định m để hai nghiệm
của (1) thỏa mãn : $(1+x_{1})(2-x_{2})+(1+x_{2})(2-x_{1})=x_{1}^{2}+x_{2}^{2}+2$
Bài làm:
a. Ta có : ![]()
![]()
Vì : ![]()
=> (1) luôn có hai nghiệm phân biệt với mọi giá trị m ( đpcm )
b. Áp dụng hệ thức Vi-et , ta có : ![]()
Do đó :
.
![]()
![]()
![]()
(*)
Nhận xét : (*) có dạng : a + b + c = 0
=> (*) có hai nghiệm phân biệt : ![]()
Vậy để hai nghiệm
của (1) thỏa mãn : $(1+x_{1})(2-x_{2})+(1+x_{2})(2-x_{1})=x_{1}^{2}+x_{2}^{2}+2$ thì m = 1 hoặc $m=\frac{-1}{2}$ .
Xem thêm bài viết khác
- Giải câu 3 đề 18 ôn thi toán lớp 9 lên 10
- Đề thi thử vào 10 môn Toán trường THPT Chuyên KHXH&NV năm 2022 (Lần 2) Đề thi thử vào 10 môn Toán 2022
- Đề thi tuyển sinh lớp 10 chuyên Toán trường Phổ thông Năng khiếu năm 2022 Đề thi vào 10 chuyên Toán năm 2022
- Giải câu 3 đề 1 ôn thi toán lớp 9 lên 10
- Đề thi thử vào 10 môn Toán thành phố Hà Nội năm 2022 - Đề 21 Đề thi thử vào 10 môn Toán 2022
- Đáp án đề thi vào lớp 10 môn Toán Bến Tre năm 2022 Đề thi môn Toán vào lớp 10 tỉnh Bến Tre năm 2022
- Lời giải bài 1 chuyên đề Rút gọn phân thức đại số
- Lời giải bài 4 chuyên đề Phương pháp đại số trong bài toán diện tích đa giác
- Giải câu 4 đề 9 ôn thi toán lớp 9 lên 10
- Giải câu 2 đề 16 ôn thi toán lớp 9 lên 10
- Đề thi tuyển sinh lớp 10 chuyên Toán Quảng Nam năm 2022 Đề thi vào 10 chuyên Toán Quảng Nam năm 2022
- Giải câu 1 đề 12 ôn thi toán lớp 9 lên 10