Giải câu 4 trang 114 toán VNEN 9 tập 2
Câu 4: Trang 114 toán VNEN 9 tập 2
Chứng minh rằng: Trong một tứ giác nội tiếp, góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó. Ngược lại, tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó là tứ giác nội tiếp.
Hướng dẫn: Xem hình 102

Nếu HIJK là tứ giác nội tiếp thì
.
Mặt khác,
và $\widehat{KJx}$ là hai góc kề bù, nên $\widehat{IJK} + \widehat{KJx} = 180^\circ$. Từ đó suy ra $....$
Ngược lại, nếu
thì $\widehat{IHK} + \widehat{IJK} = \widehat{IJK} + \widehat{KJx} = 180^\circ$
Từ đó suy ra HIJK ![]()
Bài làm:
Nếu HIJK là tứ giác nội tiếp thì
.
Mặt khác,
và $\widehat{KJx}$ là hai góc kề bù, nên $\widehat{IJK} + \widehat{KJx} = 180^\circ$. Từ đó suy ra $....$
Ngược lại, nếu
thì $\widehat{IHK} + \widehat{IJK} = \widehat{IJK} + \widehat{KJx} = 180^\circ$
Từ đó suy ra HIJK là tứ giác nội tiếp.
Xem thêm bài viết khác
- Giải câu 2 trang 47 sách toán VNEN lớp 9 tập 2
- Giải câu 5 trang 160 toán VNEN 9 tập 2
- Giải VNEN toán 9 bài 7: Luyện tập
- Giải câu 6.5 trang 68 toán VNEN 9 tập 2
- Giải VNEN toán 9 bài 4: Luyện tập Hình trụ - Hình nón - Hình cầu
- Giải câu 3 trang 54 sách toán VNEN lớp 9 tập 2
- Giải câu 5 trang 21 sách toán VNEN lớp 9 tập 2
- Giải câu 2 trang 54 sách toán VNEN lớp 9 tập 2
- Giải câu 1 trang 81 toán VNEN 9 tập 2
- Giải câu 4 trang 161 toán VNEN 9 tập 2
- Giải câu 6.10 trang 69 toán VNEN 9 tập 2
- Giải câu 1 trang 10 sách toán VNEN lớp 9 tập 2